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Abstract

The PUE’s in the NSLS storage rings are of the 4 button type.
Near the center of the PUE the beam position can be well approxi-
mated with a linear function of the sum and the difference signals
induced on these electrodes by the bunched beam. The nonlinear
response of the PUE’s further away from the center was measured.
An algorithm was developed to compensate for this effect.

1. Introduction

With more and more sophisticated experimenis and the installa-
tion of insertion devices, the need for stability of the electron beam
orbit in the NSLS storage rings has incrcased over the past few years.
This requires more accurate measurement and better control of the
orbit. As part of the effort to be able to control the beam orbit to =50
accuracy., new method of orbit correction was worked out [1] and the
orbit monitor clectronics is being upgraded [2].

It has become increasingly important (o develop an algorithm
that can be used to correct for the nonlinearities in the beam
position measuring system. With the aid of a bench measurement
we have developed such an algorithm. The present paper describes
this cffort.

2. Determination of Beam Displacement

2.1 The closed orbits in the NSLS storage rings are measured
using sets of four circular pickup electodes (PUE’s) mounted on the
rectangular vacuum chamber as shown of Fig, 1.
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Fig. 1 The NSLS vacuum chamber with pickup electrodes (PUE’s).

The e¢lectron bunches passing by the PUE's induce
V.. Vy . V.. V, voliages on the electrodes, which are sampled
sequentially by switches. The signals are detected by a fixed
frequency receiver tuned to a harmonic of the RF frequency.**

The x,, horizontal and y, vertical orbit displacements of the
beam are then calculated from the sums and differences of the
signals as:

Xy, = Kxxe (la)

o = Ky, (1)

K, and K in the above equations have the dimension of lengths, and
in general they depend on the x , y, beam position, thus making the

*Work performed under the auspices of the U.S. Depurtment of Energy
"Permanent address: Pohang Light Source, Pohang Institute of Science and
Technology, Korea.

*¥AL the present time there wie two Kinds of actual implementation; some
of the PUE’s are using the old electronic circuits |3], some the new one.

(1a,b) relationships nonlinear. In practice, K, K, can be considered
constants only near the center of the vacuum chamber.

The x, ., y, "electrical coordinates” in eqs.(1) are defined as

(Vo ¥ Vg — (Vo + V)V

X€= - o —
Vo+ Vo + Vo + vV Y
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Further information may be obtained by the remaining combination
of the four induced signals:
~ (Vo + V) A
TV, RV RV, RV, Y,

2.2 One could calculate the x, , y, "electrical coordinates” as
a function of the x, , y, beam position (see Appendix) by solving
the corresponding Dirichlet problem cither analytically [4,5] or
using the POISSON (or any similar) program. The resulting equa-
tions, do not lend themselves easily to inversion. However it is
possible to solve for the x,, y, beam positions with an iterative
method [5].

A slightly different approach is 1o use bench measurements to
approximate the K, (x, . y,) functions and then solve the implicit
eqs.(1) with a recursive method [6].

2.3 Another, more direct way of solving the problem is to use
the bench measurements (o approximate K, and K, asa function of
the measured "electrical coordinates”, thus transforming egs.(1) from
implicit to explicit relations, thereby avoiding iterative process.

Besides being able 1o avoid recursive methods, an additional
benefit of using calibration measurements is that all actual devia-
tion from the ideal case (effects of the finite transverse size of the
beam, sensor geomeltry errors, gain error in the electronics or any
distortion introduced by the electronics [5]) are taken into account.

3. Bench Measurement

2 2

3.1  An aluminiym antenna of = 3 mm diameter, simulating
the beam, was inserted longitudinally into a section of the vacuum
chamber with the four PUE electrodes in place. A movable slide
mount allowed positioning the antenna in the x and y transversal
directions with an accuracy of = 10 p. For PUE signal detection the
newly developed electronics (2] was used, the outputs of which
were the V_, Vy and V, voltages while the V_ sum voliage was
kept constant. The accuracy of the V_, Vyo VY, was =.005 Volis
(corresponding to =15 p movement in the antenna position). The
antenna was connected to an RF source at 211.54 MHz (the same
frequency to which the PUE signal receiver was tuned).

The vacuum chamber was scanned along x, = constant lines
and measurements were made with the antenna positioned at x, = 0,
41, £2, 15,410, £15, 420, £25, £29 mm and y, = 0, %1, £2, 45, 18,
411 mm grid-points. The antenna used in the measurements had a
short shield, =16 mm in diameter, attached to its base which
precluded measurements beyond these positions.

3.2 After correcting for small offset between the mechanical
and elecirical zero-points, we found that x, and y,_ are symmeirical
around x, = 0 and y, = 0.

Therefore, it is justified to simplify calculations in the follow-
ings and look at only a quadrant of the vacuum chamber using the
averaged x, and y, values.

3.3 Fig. 2a shows y, as a function of x,. The horizontal lines
correspond to measurements at y, = constant, while the vertical
lines correspond to x, = constant. One can see how the original
orthogonal x, ,y, grid is distorted.
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Fig. 2a y, as function of x, showing strongly nonlinear behaviour.
Horizontal and vertical lines correspond to y, = constant and x, =
constant, respectively.
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Fig. 2b Reconstructed x: , y‘T, grid, where K, and were calculated
using the (3) Taylor series expansion up to 7-th order terms.

1. Evenaty, = 0, x, does not seems to be linearly dependent
on x, for x, 2 5 mm. The Ax, distances between the equidistant Ax
lines are dramatically decreasing with increasing x,,

2. The nonlinearity starts at smaller x,’s as y, is increased.

3. For y,, the nonlinearity 1s less pronounced even up to
¥y, = 11 mm for small x_'s (€5 mm). This can also be seen from
Table 1 (see explanation later).

Using the results of an analytic solution of the Dirichlet
problem as guidance, the measured x, , y, and A points were fitted
in the form given by eqs.(6) in the Appendix. Using only the first
seven terms in the sums, the agreement is good; the RMS difference
between measured and fitted values are <.002, <.020 and <.015 for
Xe» Y. and A, respectively.

Figs. 3, 4 and 5 show the 3D plots of the x,(x, . Yo)» Ye{Xp - ¥)
and Afx, , ¥p) functions as fitted. The corresponding 2D projections
are also shown on the figures. This presentation clearly visualizes
the properties described in connection with Fig.2a.

3.4 Let us now turn to the inverse problem which arises
when one has to calculate the unknown beam position from the
measured electrical coordinates. As one can see from Figs. 3, at
large displacements (x, 2 20 mm) a small error in x_can result in a
large uncertainty in xg, and unfortunately one can not resolve the
uncertainty any better using information provided by A.

As we have already stressed., it is not a trivial task to invert the
(6a,b) relations given in the Appendix. Therefore we are looking
for the fitting function in a Taylor expanded form. Simple symme-
try considerations, similar to relations (2) and the conditions that x|
and y, should be zero along the y, and x_ axis, respectively
(ie. xx, = 0,y,) =0 and ynge +¥e = 0) = 0) suggest that the
Taylor expansion should be of the form:

M m M m
T _ . 2m + 1 - 2n,2n T 2n 2m + 1 - 2n
Xp = 2 2 dm,nxe Ye Yp = 2 z bm.nxe Ye
m=0 n=0 m=0 n=0
and
M m M m
— 2m -~ 2n_2n — 2n 2m — 2n
= X 2 Z am.nxe Ye = Ye Z 2 bm,nxe Ye
m=0 n=0 m=0 n=0
= xer(xe * ye) = yeKy(xe * ye) (2)

(The xg R yz notation is used to distinguish between the actual and
the calculated beam positions). The 4 and bm’n coefficients were
obtained from fitting the bench measured data with the (3) Taylor
series.

To show the goodness of the approximation, the beam position
was calculated for each measured gridpoint from eqs.(1) using

(i) constant K, Ky and

(ii) their Taylor approximation {up to 7-th order terms), using
the fitted values of the a and b coefficients.

The constant K, and were calculated to yield xg = y{ =1
mm when the antenna position was x, = y, = 1 mm. The RMS
differences between measured and calculated beam positions for
both cases are given in Table-1. The results are shown separately
for two regions within the vacuum chamber; inside and outside an
15 by 5 mm rectangle around the middle of the vacuum chamber.
Even in the center region, the error in the beam position calcula-
tion, assuming linear behaviour (constant K's), is in the order or
larger than the required = SO p accuracy.

Table-1
RMS differences between measared and calculated beam position
using constant K, or their Taylor approximation for the
center and for the outside region of the vacuum
chamber (up to 7-th order terms).

center region outside region
Taylor Constant Taylor Constant

Argys lmml ] 78 1070 | 7.9 1077 1.8 107" 8.96
Aypys lmmi | 52 107 | 481070 | 2.4 107 7.1 107"

The results in Table-1 show that it was possible to fit the
bench measured data in the form of the (3) Taylor series to ve
good accuracy. The calculated yg were plotted as a function of x,
on Fig. 2b, where as on Fig. 2a, the horizontal and vertical lines
correspond to y, = constant and x, = constant, respectively, One can
see, that the original orthogonal x, , y, grid is well reconstructed.

In future orbit measurements the fitted values of the a_  and

m.n

b, , coefficients will be used to calculate the x, , y, beam positions

from the measured x,.y,'s.

Appendix

Following the treatment presented in [4], the charge induced
by a passing electron bunch with the electrodes short circuited to
the wall is calculated first. Then the real response is obtained by
regarding the electrodes as current gencrators in parallel with the
capacities of the electrodes to the wall and to each other.

Assuming that the walls of the vacuum chamber are on uni-
form potential, and in case of a relativistic and infinitely thin beam,
the scalar & potential satisfying the Dirichlet problem for the
rectangle (see Fig.1) is [4.7]:

g Z sh[(xm(b + y)]sh[am(b * yh)]

o, sh( Zbam")

D(x, y) =
X sin [(xm(u + xb}] sin [am(a + x)] 3)

where p is the beam density localized at (xb s yb) and o, =me/ 2a.
In eq. (4) 1y, is used if y >y, ory <y,, respectively. The electric
field, normal to the walls at y = b is
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The F = x,_, y, and A functions are shown vs. the (x, , y,) beam position as 3D-plots (Figs. a), as well as their two 2D-projections onto the F, x, and
F, y, planes (Figs. b and ¢). The functions were obtained by fitting the bench measured points in the form of eqs. (6), representing the solution of the
Dirichlet problem for a rectangle.

Ea L 2. Do S0 (0y)sh{oye) 56)
(En\ = =13 V., hY:Y cos (o, x, \chic v
v \OY Aoty s i 2m 4 1 P 2m+1%0) " 2m + 17b)
P« Sh["-m(b t Yb)] . . ) 4 where the A B, C . D coefficients depend only on the ge-
= —_“sh(?bua:)*i sin {am(a + xb)} sin [(xm(a + x)] 4) ometry.
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