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Abstract 

The PUE’s in the NSLS storage rungs are of the 4 button type. 
Near the center of the PUE the beam position can be well approxi- 
mated with a linear function of the sum and the difference signals 
induced on these electrodes by the bunched beam. The nonlinear 
response of the PUE’s further away from the center was measured. 
An algortthm was developed to compcnsatc for this cffcct. 

1. Introduction 

With more and more sophisticated experinrenis and the installa- 
tion of insertion devices, the need for stability of the electron beam 
orbit in the NSLS storage rmgs has increased over the past 1.ew years. 
This requires more accurate measurement and better control of the 
orbit. As part of the el’fort to be able to control the beam orbit to =5Op 
accuracy. new method of orbit correction was worked out [ 11 and the 
orbtt monitor electronics is being upgraded [2l, 

it has become increasingly important :o develop an algortthm 
Ihat can be used to correct for the nonlinearities in the beam 
position measuring system. With the aid of a bench measurement 
we have developed such an algorithm. The present paper describes 
this effort. 

2. Detcrmmation of Beam Disolacement 

2.1 The closed orbits in the NSLS storage rings are measured 
using sets of four circular pickup elcctodes (PUE’s) mounted on the 
rectangular vacuum chamber as shown of Fig. 1. 

c 

Fig. 1 The NSLS vacuum chamber with pickup electrodes (PUE’s). 

The clcctron bunches passing by th< PUE’s induce 
va 1 v, 1 VL , V, voltages on the electrodes. which are sampled 
sequentially by switches. The signals are derected by a fixed 
frequency recctver tuned to a harmonic of the RF frequency.** 

The xh horizontal and yb verrtcal orbit dtaplacemcnts of the 
beam are then calculated from t!ic SLI~JIS and differences of the 
signals as: 

‘h = K,x, (la) 

yh = K,Y, (lbj 

KX and K, m the above equations have the dimension of lengths, and 
in general they depend on the x,, , y6 beam position, thus making the 

*Work pcrtomred unucr the auspices of the C1.S. Dcpsrtment ol Energy 
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Technology, Korea. 
**AI the pces~m trrnc there :iic two kinds <II ;tctu:d ~nrpl~lr~ent;\tion; sorue 
01 the PUE’s arc using the old electronic circuits 131. some the new one 

(la,bj relationships nonlinear. In practice, K, , K, can be considered 
constants only near the center of the vacuum chamber. 

The x, , yr “electrical coordinates” in eqs.( 1) are defined as 

(Vh + Vd) - (“d + Vc) v, 
x, = 

v, + v, + v, + v, = y 

iv* + VJ v \ \- .I 
yc = v, + v, + v, + v, = y 

Further information may be obtamed by the remaining combinatton 
of the four induced signals: 

A=- (“I, + Vc) VA 
v, + v, + V‘ + v, = v, 

2.2 One could calculate the x! , y, “electrical coordinates” ds 
a function of the xb , yb beam pusttton (see Appendix, by solving 
the correspondmy Dirichlet problem cithcr analytically [4.5] or 
using the POISSON (or any similar) program. The resulting equa- 
tions, do not lend themselves easily to inversion. However it is 
possible to solve for the xt, , yb beam positions with an iterative 
method [5]. 

A slightly different approach is to use bench mcasure~ne~~ts to 
approximate the KX y (xb , yb) functions and then solve the implicit 
eqs.( I j with a recursive method [6]. 

2.3 Another, more direct way of solving the problem is to use 
the bench measurements to approximate K, and q as a function of 
the measured “electrical coordinates”. thus transforming eqs.( 1) from 
implicit to explicit relations, thereby avoiding iterative process. 

Bestdes bemg able to avoid recursive methods, an additional 
benefit of using calibration measurements is that all actual devia- 
tion from the ideal case (effects of the finite transverse size of the 
beam, sensor geometry errors, gain error in the electronics or any 
distortion introduced by the electronics [5]) are taken into account. 

3. Bench Measurement 

3.1 AII aluminium antenna of = 3 mm diameter, simulating 
the beam. was inserted longitudinally into a section of the vacuum 
chamber with the four PUE electrodes in place. .4 movable slide 
mount allowed positioning the antenna in the x and y transversal 
directions with an accuracy of = IO p. For PUE signal detection the 
newly developed electronics 121 was used, the outputs of which 
were the V, , V, and V, voltages while the Vs sum voltage was 
kept constant. The accuracy of the V, , V, , V, was z.005 Volts 
(correspondmg to =I5 it movement in the antenna positton). The 
antenna was connected to an RF source at 211.54 MHz (the same 
frequency IO which the PLhE signal receiver was tuned). 

The vacuum chamber was scanned along x6 = constant lines 
and measurements were made with the antenna positioned at xu = 0, 
*I. f2. &S, lt10, +lS, f20. f25, lt29 mm and yh = 0, fl, f2, fS, &B. 
ItI 1 mm grid-points. The antenna used in the measurements had a 
short shield, =16 mm in diameter. attached to its base which 
precluded measurements beyond these positions. 

3.2 After correcting for small offset between the mechanical 
and electrtcal zero-points, we found that x, and ye are symmetrical 
around xb = 0 and yb = 0. 

Therefore, it is justified to simplify calculations m the follow- 
ings and look at only a quadrant of the vacuum chamber using the 
averaged x, and y, values. 

3.3 Fig. 2a shows y, as a function of xc. The horizontal lines 
correspond to measurements at yb = constant, while the vertical 
lmes correspond to xh = constant. One can see how the original 
orthogonal xh , y,, grid is distorted. 
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Fig. 2b Reconstructed xz, y: g rid, where K, and Ky were calculated 
using the (3) Taylor series expansion up to 7-th order terms. 

1. Even al yb = 0, xb does not seems to be linearly dependent 
on x, for xb 2 5 mm. The dx, distances between the equidistant Axx, 
lines are dramatically decreasing with increasing xt,, 

2. The nonlinearity starts at smaller xt,‘s as y,, is increased. 
3. For ye, the nonlinearity IS less pronounced even up to 

y,, = 11 mm for small xt,‘s (55 mm). This can also be seen from 
Table 1 (see explanation later). 

Using the results of an analytic solution of the Dirichlet 
problem as guidance, the measured xy , y, and A points were fitted 
in the form given by eqs.(6) in the Appendix. Using only the first 
seven terms in the sums, the agreement is good; the RMS difference 
between measured and fitted values are 5.002, 5.020 and <.OlS for 
x, , ye and A, respectively. 

Figs. 3. 4 and 5 show the 3D plots of the x,(xb , yb), ye(xh , yb) 
and A(x, , yb) functions as fitted. The correspondmg 2D proJections 
are also shown on the figures. This presentation clearly visualizes 
the properties described rn connection with Fig.2a. 

3.4 Let us now turn to the inverse problem which arises 
when one has to calculate the unknown beam position from the 
measured electrical coordinates. As one can see from Figs. 3, at 
large displacements (xb 2 20 mm) a small error in x, can result in a 
large uncertainty in xb, and unfortunately one can not resolve the 
uncertainty any better using information provided by A. 

As we have already stressed. it is not a trivial task to invert the 
(6a,b) relations given in the Appendix. Therefore we are looking 
for the fitting function in a Taylor expanded form. Simple symme- 
try considerations, simtlar to relations (2) and the conditions that xr, 
and yb should be zero along the y, and x, axis, respectively 
(i.e. xb(x, = 0. y,) = 0 and yr, x, , yr = 0) = 0) suggest that the 
Taylor expansion should be o d the form: 

xz = i g amaXfm + ’ - ‘“y: yz = g % bmnnxFyzm + t - ?n 

and 

= x, 5 g an,nX;m - 2nyp 
m=4 n4 

= y, mi n; b,,,x,?“ys” - an 

= XeK.x Xe ( ’ Ye) = Yeq% ’ Ye) (2) 

(The xz , yz notation is used to distinguish between the actual and 
the calculated beam positions). The a,,, n and b, n coefficients were 
obtained from fitting the bench measured data bith the (3) Taylor 
series. 

To show the goodness of the approximation, the beam position 
was calculated for each measured gridpoint from eqs.(l) using 

(i) constant K,, K, and 
(ii) their Taylor approximation (up to 7-th order terms), using 

the fitted values of the a and b coefficients. 
The constant K, and Ky were calculated to yield x: = yz = I 

mm when the antenna position was x,, = yt, = 1 mm. The RMS 
differences between measured and calculated beam positions for 
both cases are given in Table-l. The results are shown separately 
for two regions within the vacuum chamber; instde and outside an 
fS by f5 mm rectangle around the middle of the vacuum chamber. 
Even in the center region, the error in the beam position calcula- 
tion, assuming linear behaviour (constant K’s), is in the order or 
larger than the required = 50 p accuracy. 

Table- 1 
RMS dtfferences between measured and calculated beam position 

using constant KX,Y or their Taylor approxrmation for the 
center and for the outside region of the vacuum 

chamber (up to 7-th order terms). 
center regmn outside region 

Taylor Constant Taylor Constant 

Axms tmml 7.R 1O-3 7.9 10-a 1.8 IO-’ R.96 

Ayms tnlnll 5.2 1o-3 4.8 10-z 2.4 10-l 7.1 10-l 

The results in Table-l show that it was possible to fit the 
bench measured data in the form of the (3) Taylor series to ve 

7 good accuracy. The calculated yz were plotted as a function of xb 
on Fig. 2b, where as on Fig. 2a, the horizontal and vertical lines 
correspond to yh = constant and xb = constant. respectively. One can 
see. that the original orthogonal xb , yt, g rid is well reconstructed. 

In future orbit measurements the fitted values of the am8 and 
b ,11,, coefficients will be used to calculate the xh , yb beam positions 
from the measured x, , y,‘s. 

Appendix 

Following the treatment presented in [4], the charge induced 
by a passing electron bunch with the electrodes short circuited to 
the wall is calculated first. Then the real response is obtained by 
regarding the electrodes as current generators in parallel with the 
capacities of the electrodes to the wall and to each other. 

Assuming that the walls of the vacuum chamber are on uni- 
form potential, and in case of a relativistic and infinitely thin beam, 
the scalar @ potential satisfying the Drrichlet problem for the 
rectangle (see Fig.1) is [4.7]: 

wx, y) = t c 
sh[a,(b + y)]s~a,(b * yh)] 

u,sh( ?ba,,) 

x sin [cr,,(a + xb)] sin [a,(a + x)] (3) 

where p is the beam density localized at x ( b , yb) and cx, = mrr / 2a. 
In eq. (4) jlyb is used if y > yr, or y I yb, respectively. The electric 
field. normal to the walls at y = fb is 
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The F = x< , y, and A functions are shown vs. the (x b , yb) be;m, position as 3D-plots (Figs. a), as well as their two 2D-projections onto the F, xb and 
F. yb planes (Figs. b and c). The functtons were obtained by htttng the bench measured points in the form of eqs. (6), representing the solution of the 
Dirichlet problem for a rectangle. 

CEJ = - [q=*, 

= - p 2 q$$fd stn [a,(a + xb)] sin [u,(a + x)] (4) 

yielding an induced voltage on an electrode located at x and having 
a radius of r: 

X+T 
V+-$ I tEn), = fb dx 

x-r 

where Q is the total charge induced on the electrode, i is the 
instantenous bunch current, c is the speed of light and C is the 
capacity of the electrode to the other electrodes and to the wall. 

One can take advantage of the fact that the electrodes are at 
symmetrical positions to simplify the calculations. Since: 

x* = xc = - XB = - XL) = Ix I and yA = yB = - yr = - yD = b 

certain terms cancel each other in the sums and differences and one 
obtains: 

c *a,, sin (%,%)Ch(%nh) 
” = ? = z: B?,,, + , ~0s (~~?m+tx#‘(%, + 0’1,) (Sa) 

Ye = ; = y2; + 1 Cm (CL?, + AJ”h(% + IYb) (5b) 

B %I + I Cm (al”,+tXb)ch(%“, + IYb) 

c %n sin (%mxb)sq%InYb) 

I: B?, + I cm (%m+t%)ch(%n, + ,Y,) 
PC) 

where the A,,, , B, , C, , D,, coefficients depend only on the ge- 
ometry. 
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