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Abstract

An overview of the theory and implementation of the differ-
ential algebraic method is presented. The method allows a
very straightforward computation of Taylor maps of beam-
lines. Contrary to older techniques, the method is not re-
stricted to low order and allows the study or arbitrarily many
variables, including system parameters.

The resulting Taylor maps offer a variety of useful applica-
tions, including fast short term tracking, the computation of
generating functions which can be used for symplectic track-
ing, as well as the direct computation of tuneshifts, smear,
and approximate invariants. References to more detailed lit-
erature are given,

Description of Particle Accelerators by Mappings

The motion through a beam line or particle accelerator
can be described by a map relating final phase space vari-
ables Zy to initial phase space variables Z; and some machine
parameters of interest 5

o
7 = M7, 6) (1)

The most direct way to study the map and its behaviour
under repetition is its evaluation on specific particle coordi-
nates. This is the well-known tracking method. This method
allows a qualitative discussion of stability and gives an esti-
mate of the topology of the occupied phase space area. Its
disadvantages are the computational expense and the difficul-
ties in interpreting the results. In particular, many quantities
of interest like tune shifts, chromaticities, smear and invari-
ants cannot be extracted directly but only in a time intensive
way requiring the tracking of particles for many revolutions.

Because of the computational expense of evaluating the
transfer map, it is advantageous to approximate it by a func-
tion that is easier to evaluate. In addition, it is advantageous
if the approximated function allows some analytical manipula-
tion, for example a direct computation of relevant quantities,
search for invariants etc.

A very natural technique to approximate functions that
are very costly to evaluate, in particular in the case of func-
tions which are well behaved and smooth, is interpolation; one
first evaluates the function on sufficiently many suitably cho-
sen points, and then fits some other function which is easicr
to evaluate through these points.

To be more specific, one could evaluate the function on a
regular grid in phase (and parameter) space and use one of
the many existing interpolation schemes. Alternatively, one
could expand the action-angle representation of the function
in a Fourler series for the angle part and a polynomial for the
action part, as it is done in the method by Warnock et al. [1].
Interpolation being one of the best understood and studied
subjects of numerical analysis, good results can be achieved
by carefully using appropriate techniques.
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A significant drawback of this approach becomes notice-
able in high dimensions: The required number of interpola-
tion points increases drastically, and so does the amount of
data required to describe the map. In the simplest case, the
interpolation on a multi-dimensional grid, a total of

N=n" (2)

points are required to describe the map, where n is the
number of cells per dimension, and v is the dimensionality of
the map. After interpolation, the number of required param-
eters for the description of the map is also in the order of N.
For example, in the case of a modest n = 10 points per phase
space direction, one obtains N = 10000 in the case of four
dimensions, and N = 1000000 in the case of six dimensions,
without treating any dependencies on system parameters.

In practical situations, numbers in this magnitude are ac-
tually encountered: In the case of the Warnock et al. in-
terpolation method, a total of about N = 11000 points are
required for an only four dimensional simulation of the SLC
North Damping Ring.

Using appropriate techniques designed for speed, for ex-
ample a well programmed arbitrary dimension local spline
approximation, an increase in speed as compared to the di-
rect tracking is very likely to become apparent, in particular
for large lattices. Nevertheless, because of the complexity of
the interpolation function, not very much more insight has
been obtained, and the direct extraction of most quantities of
interest is still rather cumbersome.

The major difficulty of the direct interpolation, the very
large amount of data required to describe a map, in particular
for many variables, can be overcome by using a Taylor series
expansion of the map. In the case of our study of accelerator
phase space maps, this also seems a quite natural approach
because the map is "almost” linear and we are interested in
the study of the effects of the “small” nonlinear perturbations.
In the case of Taylor maps, use is made of the fact that the
operation of taking partial derivatives with respect to different
variables commute, i.e. for example

of _ Of )
220y — Byox (3)
This can be understood as a syminetry of suitable smooth
maps and decreases the amount of data required to describe
a map significantly. It can be shown [2] that the total number
of derivatives required to describe a function in v variables by
its Taylor series to order n requires a total of

(4 v)!
N = —— (4
nlo! ()
For example, if we want to describe a four variable funec-
tion to tenth order, this yields N = 1001, and for a six variable

function to the same order we obtain N = 8008.
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If we wanted to interpolate a six dimensional function on
a regular grid with a similar amount of data, we could only
choose around four or five interpolation points per dimension.

The major characteristic of a high order Taylor approxi-
mation is that its accuracy is extremely high close to the ex-
pansion point, but then also decreases noticeably when going
further and further away. So the accuracy of the approxima-
tion is highly weighted, favoring peints close to the center,
whereas in the case of interpolation the accuracy is typically
uniform.

In very unfavorable cases, even for functions whose Taylor
series converges to the function (which is the case for our
maps), it may be quite cumbersome to increase the order
sufficiently to achieve the desired accuracy for very nonlinear
maps. In this case, it may be advisable to treat points very
far away from the expansion point separately, for example by

using additional lower order Taylor series with suitably chosen
expansion points.

Taylor series codes have a long history [3,4,5,6,7] and orig-
inated in the optical disciplines and the related study of guid-
ance systems and spectrometers. In these cases, a much ap-
preciated feature of the Taylor series method is the ability
to relate certain Taylor coefficients to certain classes of beam
line elements, which is of utmost importance for the design
and correction of these devices.

The major limitation of these codes has been that the
orders that could be treated are very low; only recently has
it been possible to generate a fifth order code [8,7,9].

In the next section we will introduce a different technique
for the computation of Taylor series from maps that allows a
rather straightforward computation to arbitrary order.

Differential Algebras

In the traditional Taylor series codes, the total Taylor se-
ries of the system is computed in the following way. The codes
contain a library of formulas that describe the Taylor series
coefficients for each possible element of the beamline, such as
drifts and multipoles, as a function of the parameters of the
element, such as length and strength. Then, the total Taylor
series is computed by combining the individual Taylor maps
nto a total Taylor map by using the chain rule.

The limitation of this procedure is that the complexity of
the Taylor series for the individual elements increases drasti-
cally with the order. This suggests to brake down the com-
putation of individual Taylor series into smaller pieces. In
the method outlined her, we even go to the most extreme
case and represent each individual addition and multiplica-
tion separately. For details we refer to {10,11,2,12,13]

Consider the vector space R? of ordered pairs (qo, ¢1),

G0, ¢, € Rin which an addition and a scalar multiplication are
defined in the usual way:

(g0, q1) + (ro,m) = (qo + ro.qn + 71) (5)
t-(go,q1) = (t go,t 1) {6)
for qo,q1, 70,71, t € R. Besides the above addition and scalar

mnltiplication a multiplication between vectors is introduced:

(90, 91) - {ra,71) = (g0 - 70590 - 71 + G1 - 7o) )

for qo, q1,70,71 € R. With this definition of a vector multipli-
cation, the set of ordered pairs becomes an algebra.

Looking at numbers (a,0), we see that for addition, mul-
tiplication and ordering they behave like real numbers. So we
can embed the real numbers into the structure in the same
way they could be embedded into the complex numbers.

It is easy to verify that (1,0) is a neutral element of mul-
tiplication, because according to equation (7)

(1,0) - (g0, 91) = (90, 91) - (1,0) = (g0, q1) (8)
It turns out that {go, ¢1) has a multiplicative inverse if and

only if go is nonzero; so the structure is not a field. In case
go # 0, the inverse is

- 1 q1
( Y 1 - _’_# 9
90, 1) “‘(qo qg (9)

Using Equation (4), it is easy to check that in fact (go,q1)7! -
(g0, q1) = (1,0).

This structure is very helpful for the computation of deriva-
tives, as shall be illustrated now. Let us consider the following
example function:

2 1
flzy =z"+ Z (10)

Differentiating the function yields:

f’(r)r—ch-Il2 (11)

Suppose we are interested in the value and the derivative at
x = 2. We obtain

@) =3, f@=2 (12)

Now take the definition of the function f in Equation (10},
replace all operations occurring in it by the corresponding
ones in our algebra, and evaluate it at (2,1). We obtain:

Fl2,1)

il

(2,1 + (2,1)7"
1 1.
= @+ Gy
9 15
= 5.3 (13)

As we can see, after the evaluation of the function the first
component of the result is just the value of the function at
z = 2, whereas the second component is the derivative of the
function af = = 2.

There are at least two ways to view and understand this
phenomenon. We begin with the most down-to-earth and
elementary view. By our choice of the starting vector (2,1),
initially the vector contains the value I(2) of the identity func-
tion I : ¢ — z in the first component and the derivative of
I'(2) = 1 in the second component.

Now assume that in an intermediate step two vectors of
value and derivative (g(2),9'(2)) and (A(2), #’(2)) have to be
added. According to (5) one obtains (¢(2)+1(2), ¢'(2)+4'(2)).
But according to the rule for the differentiation of sums, this
is just the value and derivative of the sum function (g + h) at
= 2.

The same holds for the multiplication: Suppose that two
vectors of value and derivatives (¢(2),¢'(2)) and (h(2), '(2))
have to be multiplied. Then according to (7) one obtains
(9(2) - k(2),9(2) - K'(2) + ¢'(2) - R(2)). But according to the
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uct function (g - ~) at @ = 2.

The evaluation of the function f at (2,1) can now be
viewed as successively combining two intermediate functions ¢
and A, starting with the identity function and finally arriving
at f. At each intermediate step, the derivative of the inter-
mediate function is automatically obtained as the differential
part according to the above reasoning.

An interesting side aspect i1s that with the search for a
multiplicative inverse in Equation (9) one has derived a rule

to differentiate the function f(z) 1/x without explicitly

using calculus rules.
It is quite obvious how this method can be generalized to

one nmt collects all

al variables:

higher derivatives and sever:
the derivatives into one vector, introduces the usual compo-
nentwise addition and models a vector multiplication using
the product rule. Following the same reasoning as above, we
can verify that we can compute accurate derivatives.

In this general case of higher derivatives and several vari-
ables, it 1s useful to introduce another operation besides ad-
Re-
1110111})(‘1&115’; that all the vectors can be viewed as containing a

~1Na N S it P T T 17 NP UG . JUp: ) Ay
COLLE (,LIULL Ol derivatl I a 1uicuioi j, W Call nud the vec-

dition, scalar multiplication and vector multiplication.
ives o
tor of derivatives of the derivative function f' by just moving
components appropriately. This operation we denote with 0.
It is easy to verify that we then have

(14)
JE B T U
ides addition and

mulhph( ation, the resulting structure is called differential
algebra [14].
operator (as in the case of partial derivatives of several vari-
ables), the operators can be used to introduce a Lie algebraic

Ae note that if there is more than one such

structure using the usual Poisson bracket.

We note that virtually all standard functions like trigono-
metric functions, exponentials, roots etc. can be introduced
in the new structure. For details we refer to [2].

Besides the hands-on view of differential algebra just pre-
sented, there is another more mathematical view of the sub-
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arithmetic introduced in the beginning of the chapter has
been known for a very long time in mathematics, it can be
traced back for at least 100 years [15,16]. What captured the
interest of the mathematicians in these days was not so much
the connection to sum and productrule of calculus, but rather
that the structure has some remarkable ordering properties.

Indeed, the set can be ordered in the following way. Let

(a,b) and (¢, d) be given; we say

(a,0) < (c,d)ifa< e, or(a=cand b<d)
(a,6) > (e,d)ifa>c,or (a=candb>d)
(a,b) = (e,dyifa=cand b=d (15)

So in order to determine ordering, we look first only at the
first components. If they already differ, they alone determine
which of the numbers is larger. Only if they are the same do
we compare the second components.

From this definition it is clear that for any (e, b) and (¢, d).

it

(‘XHC"U_V one of the three propcnl(‘s dl\\'(l.yb holds:

(c.d) or (a,b) < (e,d) or (a,b) > (c,d).

{a,b)
Furthermore,
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(a,b) (c d) e, f), and for (e, f) > 0 we have

(a,b) - (e, f . Altogether, the algebra assumes

the rather special tlucture of a arithmetically ordered set
Where in the complex numbers, (0, 1) was a root of -1, here

it has another interesting property. Looking at the ordelmg
relations, we infer that for a real number r > 0,

{0,0) < (0,1) < (r,0)

Hence (0,1) lies "in between” 0 and every real number,
e. (0,1) is infinitely small.
Because of this we call d = (0, 1) the differential unit. The
first component of the pair (gp, ¢1) is called the real part, and
the second component is called the differential part.

(16)

Now consider the rela‘tionship

flz + Az) = flz) + Az - fl{x) + Az? r(x) (17)

where r(z) is bounded, which is well known from Caleulus.
In our new structure we now have infinitely small quantities
like d = (0,1) at our disposal, so one could be tempted to set
Az = d. Because of d% = 0, the relationship then reads

fla+d)=f(z) +d- f(a)

It can be shown that the intuitive reasoning presented here

is indeed Justlﬁed at least for a large (lass of fun( tions f [17].

Naw 1 o L
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(18)

rislaa far ¢
ruies ior v

i
airs, we infer

fl(z, 1)) = flz+d) = flz) +d- f(z) = (fz), f(x)) (19)
and this is the same result as above
We restrict ourselves to these rough sketches. We note
that the differential algebra discussed here can be generalized
in a very fundamental way to become a fleld (in which all

divisions by nonzero quantities are allowed), and one can in-
troduce calculus on this field in a similar manner as on the
original real numbers. However, the fleld now contains in-
finitely small and large quantities, and for example allows a
direct treatment of delta functions [17].
larity to the not so direct methods of nonstandard analysis
(18,19].

Conceptually, the computation of Taylor series maps from
a tracking code is now a quite straightforward procedure: one

So there is a simi-

just has to replace all operations in the tracking section, in-

, by
the corresponding ones in differential algebra, and one auto-

cluding numerical integrators or whatever there might be

matically obtains all the partial derivatives.

The Differential Algebra Package

In practice, the approach suggested here requires an ef-
ficient implementation of the differential algebra and related
operations. While the implementation of the operations for a
fixed low order is rather simple, the implementation to arbi-
trary order and for an arbitrary number of variables is quite
involved and requires sophisticated logistic algorithms.

The operations on the differential algebra discussed in the

TINTYTTY AN - 4l s
last section have been pr()&lduum’u in FORTRAN by the au-

thor. The package also contains a complete memory manage-
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ment tool to store all differential algebraic quantities. From
the user’s side, all differential algebraic objects are just point-
ers to locations within a large memory area.

The most important features of this package being or-
der and variable independence, a rigid storing scheme for the
derivatives is prohibited. and so before any of the operations
can be performed, the package has to be initialized by telling
it a certain maximum order and number of variables.

Another important criterion in the development of the
package was speed: using a sophisticated addressing tech-
nique logistic overhead is kept to a minimum. To be more
specific, typically about 70 percent of the computing time 1s
spent on actual real arithmetic.

In practice it frequently happens that vectors contain many

zeros. For example, this is the case if a certain quantity does
not depend at all on one or more of the independent variables.
To gain speed in these cases, a compression technique was de-
veloped which maps away all the zero coeflicients, such that
actual execution time only depends on the number of nonzero
entries.

Because FORTRAN does not allow the introduction of ar-
bitrary data types and operations, all of the fundamental op-
erations are cast into subroutine calls. The author is aware of
the advantages other programming languages like C++ offer
in this respect; however, virtually all existing beam dynamics
codes and tools are written in FORTRAN, so it is not wise
to isolate oneself from this world. Furthermore, rumour has
it that the new FORTRAN implementation 8x will also allow

arbitrary data types,

To facilitate life until these better days, a precompiler [20]
has been developed that allows direct declaration of differen-
tial algebraic quantities and their use in formulas. It trans-
forms all of the extensions to calls to the appropriate differ-
ential algebraic routines and thus generates standard FOR-
TRAN code. We note, however, that the more difficult part,
namely the algorithms used for the differential algebra opera-
tions themselves, are rather language independent, and other
languages have no significant advantage over current FOR-

TRAN.

The Code COSY INFINITY

Despite the fact that the differential algebraic tools de-
scribed here have been around only for a rather short time,
there are already quite a few codes extracting high order maps
using the tools. Among older codes, several have been up-
graded for map extraction using the differential algebra pre-
compiler. Some of these upgraded codes are TEAPOT [21],
THINTRAC [22° and SIXTRAC. Other codes [23,24] were
rather specifically designed having differential algebraic map
extraction in mind.

The author himself is in the process of completing a gener-
alization of the fifth order code COSY [7,9] to arbitrary order.
This very general code allows both thick and thin elements as
well as fringe fields. Furthermore, any analytically given or
measured field distribution can be used for the extraction of
the map. Altogether, the goal was utmost flexibility to allow
for the simulation of all conceivable field arrangements.

The code can be used both for tracking and for map ex-
traction with subsequent map manipulations including closed

1422

orbit correction, computation of tune shifts and invariants
and other quantities of interest.

The input of the code is itself a rather powerful language
with many dedicated features for specific purposes, in partic-
ular with all differential algebraic operations built in. The
syntax of the language is open to allow for casy future exten-
sions.
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