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Abstract 

-411 overview of the theory and implementation of the diffcr- 
ential algebraic method is presented. The method allows a 
very straightforward computation of Taylor maps of bean- 
lines. Contrary to older techniques, the method is not re- 
stricted to low order and allows the study or arbitrarily many 
variables, including system parameters. 

The resulting Taylor maps offer a variety of useful applica- 
tions, including fast short term tracking, the computat,ion of 
generating functions which can be used for symplcctic track- 
ing, as well as the direct computation of tuneshifts, smear, 
and approximate invariants. Rcferrnccs to more detailrd tit- 
rrature arc givcm. 

Description of Particle Accelerators by Mappings 

The mot,ion through a beam line or particle accelerator 
can be described by a map relating final phase space vari- 
abtcs 2, to initial phase space variables z7: and some machine 

parameters of interest s’: 

Ff = ,q<,a’, (1) 

The most direct way to study the map and its behaviour 
under repetition is it,s evaluation on specific particle coordi- 
nates. This is the well-known tracking methotl. This method 
allows a qualit,ative discussion of stability and gives an esti- 
mate of the topology of the occupied phase space area. Its 
disadvantagc5 arr the computational expense and the difficu- 

ties in into-rprct,ing the rc-suits. In pzuticular, many quantit,ies 
of interest like tune shifts, chromaticities, smear and invari- 
ants cnnnot bc ext,ractetl directly but only in a timca intensive 
way requirmg the trackmg of particles for many revolutions. 

Becal~se of the computational expense of evaluating the 
tranpfcr map: it is advantageous to approximate it by a func- 
tion that is cTasic,r to evaluate. In addition, it is advantageous 

if the approximated function allows some analytical xnanipula- 
tion, for examptc a direct cornputatzion of relevant quantit,icx$, 
search for invariants etc. 

A very natural technique to approximate functions that, 
nre very costly to evaluate, in particular in the case of func- 
tions which are well behaved and smooth, is inttirpolation; on< 
first, evaluates the function on sufficiently many suitably cho- 
s(~n points. and then fits some other flmction which is easier 
t,o c:valuat,t~ through thc>se points. 

To bc morr xpc&ic. one coultl cvalllat,c the fun&on on a 

regular grid in phase (and parameter) space and use one of 
tlie many existing interpolation schemes. Alternatively, one 
could expand the action-angle representation of the function 
in a Fourier series for the angle part and a polynomial for the 
action part, as it is done in the method by ‘iliarnock et al. [I]. 
Interpolation being one of the best understood and studied 
subjects of numerical analysis, good results can be acllievrd 
t)y carcflllly losing appropriat,e technicllles. 

A significant drawback of this approach becomes notice- 
able in high dimensions: The required number of interpola- 
tion points increases drastically, and so does the amount of 
data required to describe the map. In the simplest case, the 
interpolation on a multi-dimensional grid, a total of 

nr = ILU (2) 

points arc required to describe the map, where 7~ is the 
number of cells per dimension, and u is the dimensionatity of 
the map. After interpolation, the number of required pararn- 
eters for the description of the map is also in the order of N. 
For example, in the case of a modest 11 = 10 points per phase 
space direction, one obtains N = lOC100 in the case of four 
dimensions, and Ai = 1000000 in the case of six dimensions, 
without treating any dependencies on system parameters. 

In practical situat,ions, numbers in this magnitude are ac- 
tually encountered: In the case of the Warnock et al. in- 
terpolation method, a total of about n’ = 11000 points are 
required for an only four dimensional sirnulation of the SLC 
i’iorth Damping Ring. 

Using appropriate techniques designed for speed, for ex- 
ample a well programmed arbitrary dimension local spline 
approximation, an increase in enecd as compared to the di- 
rect tracking is very likely to become apparent, in particular 
for large lattices. Nevertheless, because of the complexity of 

the interpolation function. not very much more insight has 
been obtained, and the direct extraction of most quantities of 
interest is still rather cumbersome. 

The major difficulty of the direct interpolation, the, vcr) 
large amount of data required to describe a map, in part,icular 
for many variables, can be overcome by using a Taylor series 
expansion of the map. In the case of our study of accelerator 
phase space maps, this also seems a quite natural approach 
because the map is “almost” linear and we arc interested in 
the study of the effects of the “small” nonlinear perturbations. 
In the case of Taylor maps, use is made of the fact that the 
operation of taking partial derivatives with respect to different 
variables commute, i.e. for esamplc 

This can bc undrrstood as a symmetry of sllit,ablc smooth 
maps and dccrpases the amount of data rcquircld to describe, 
a map significantly. It ran be shown [?I that the total numl)c~r 
of derivatives required to describe a function in c) variables by 
its Taylor series to order n requires a t,otal of 

For example, if we want to describe a fotlr variable func- 
tion t,o tenth order, this yields N = 1001, and for a six varial)le 
function to the same order we obtain N = 8008. 
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If we wanted to interpolate a six dimensional function on 
a regular grid with a similar amount, of data, we could only 
choose around four or five interpolation points per dimension. 

The major characteristic of a high order Taylor approxi- 
mation is that its accuracy is extremrly high close to the ex- 
pansion point, hut then also decreases noticeably when going 
further and further away. So the accuracy of the approxima- 
tion is highly weighted, favoring points close t,o the center, 
whereas in the case of interpolation the accuracy is typically 
uniform. 

In very unfavorable cases, even for functions whose ‘Taylor 

series converges to the function (which is the case for our 
maps), it may he quite cumbersome to increase the order 
sufficiently to achieve the desired accuracy for very nonlinear 

XELpS. In this case, it may be advisable to treat points very 

far away from the rxpansion point separately, for example by 

using additional lower order Taylor series with suitably chosen 
expansion points. 

Taylor series codes have a long history [3,4,5,6,7] and orig- 
inated in the optical disciplines and t,he related study of guid- 
ance systems and spectrometers. In these cases, a much ap- 
preciated feature of the Taylor series method is the ability 
to relate certain Taylor coefficients to certain classes of beam 
line elements, which is of utmost importance for the design 
and correction of these devices. 

The major limitation of these codes has been that the 
orders that could be treated are very low; only recently has 
it been possible to generate a fifth order’code [8,7,9]. 

In the next section we will introduce a different technique 
for the computation of Taylor series from maps that allows a 
rather st,raightforward computation to arbitrary order. 

Differential Algebras 

In the traditional Taylor series codes, the total Taylor se- 
ries of the system is computed in the following way. The codes 
contain a library of formulas that describe the Taylor series 
coefficients for each possible element of the beamline, such as 
drifts and multipoles, as a function of the parameters of the 
rlementZ, such as length and strength. Then, the total Taylor 
series is computed by combining the individual Taylor maps 
into a total Taylor map by using the chain rule. 

The limitation of this procedure is that the complexity of 
the Taylor series for the individual elements increases drasti- 
cally with the order. This suggests to brake down the com- 
putation of individual Taylor series int,o smaller pieces. In 
the m&hod outlined her, we even go to the most extreme 
case and represent each individual addition and mirltiplica- 
tion separately. For details we refer to [10,11,2,12,13] 

Consider the vector space R* of ordered pairs (qa, qi), 

‘lo, ‘11 t R in which an addition and a scalar multiplication art 
hfmeti in the usual way: 

(qo,qd + (TO, 4 = (go + To. q1 + VI) (5) 

t (PO,Plj = (t qo,t 41) (6) 
for qo, ~1, rs, vi, t E R. Besides the above addition and scalar 
mliltiplication a multiplication bet,ween vectors is introduced: 

(go, qI) . (7.0: r1) = (9b r0, PO n + QI ~0) (7) 

for ~s,qi, rs,ri E R. With this definition of a vector multipli- 
cation, the set of ordered pairs becomes an algebra. 

Looking at numbers (a,O). we see that for addition, mul- 
tiplication and ordering they behave like real numbers. So we 
can embed the real numbers into the structrur in the same 
way they could be embedded into the complex numbers. 

It is easy to verify that (1,O) is a neutral element of mul- 
tiplication, because according to equation (7) 

(1:0).(qo,(11)=(90,(11).(l,Oj=(qo,Ql) (8) 

It turns out that (go, 41) has a multiplicat,ive inverse if and 
only if 90 is nonzero; so the structure is not, a field. In case 
qo # 0, the inverse is 

(qo,gl)-l = (l -2j 
40’ d 

Using Equation (4), it is easy to check that in fact (qo, ql)-l 
(clO> QI) = (I> 0). 

This structure is very helpful for the computation of deriva- 
tives, as shall be illustrated now. Let us consider the following 
example function: 

f(x) = x2 + ; 

Differentiating the function yields: 

(10) 

f’(x) = 2x - $ (11) 

Suppose we are interested in the value and the derivative at, 
x = 2. We obtain 

9 
f(z) = - 15 f’(2) = - 

’ 2” 4 (12) 

Now take the definition of the function f in Equation (lo), 
replace all operations occurring in it by the corresponding 
ones in our algebra, and evaluate it at (2,l). We obtain: 

f[(2, l)] = (2,ly + (2‘ 1)-I 

= (4,4)1(;%-;) 
= (;,y, (13) 

As we can see, after the evaluation of the function the first 
component of the result is just the value of the function at 
I = 2, whereas the second component is the derivative of the 

function ai x = 2. 
There are at least two ways to view and understand this 

phenomenon. We begin with the most down-to-earth and 
elementary view. By our choice of the starting vector j2, l), 
initially the vector contains the value 1(2) of the identity func- 
tion I : x --+ z in the first component and the derivative of 
I’(2) = 1 in the second component. 

Now assume that in an intermediate step two vectors of 
value and derivative (g(2),g’(2)) and (h(2), h’(2)) have to be 
added. According to (5) one obtains (g(2)+h(2),g’(2)+h’(2)). 
But according to the rule for the differentiation of sums, this 
is just the value and derivative of the sum function (g + h) at 

x = 2. 
The same holds for the multiplication: Suppose that two 

vectors of value and derivatives (y(2),g’(2)) and (/l(2), h’(2)) 
have to be multiplied. Then according to (7) one obtains 
(g(2) h(2), g(2) h’(2) + g’(2) . h(2)). But according to the 
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product rules this is just the value and dcrivativr of the prod- 
uct function (y ik) at 5 = ‘1. 

The evaluation of the function f at (2, 1) can now he 
viewvcd as succcssivrly combining two irlt~,rrnccliatefunctions 9 
and h: starting with t,he identity function and finally arriving 
at f. At each int,ermediate step, the derivative of the inter- 
mediate function is automatically obtained as t,he differential 
part, according to the above reasoning. 

An interesting side aspect is that with the search for a 
multiplicative inverse in Equation (0) one ha.s derived a rule 
to differentiate the function f(r) = l/.r without, explicitly 
losing calculus rllles. 

It is qllite obvious how this m&od can be generalized to 
higher drrivat,ivrs and several variables: one just collects all 
the derivatives into one vector, introduces the usual compo- 
nrntwisc addition and models a vector multiplication using 
the product rulr. Following the same reasoning as above, we 
can wrify that we can coml)ute accurate (Icrivatives. 

In this general case of higher derivatives and sewral vari- 
al)lcs, it is useful to introduce another operation besides atl- 
dition, scalar multiplication and vector mult,iplication. Re- 
mcmtwriug that all the vectors can be viewed as containing a 
collrction of tlcrivat,ives of a funct,ion f, we can find the vec- 

tor of dcrivakivrs of the derivative function S’ by just moving 
components appropriately. This operat,ion we denote with a. 
It is easy to verify that we then have 

a(&bt)=((dz).fJ+z.(&) (14) 

Wh~nrvcr there is such an operation besides addition and 
rmilti~)lication, the resulting structure is called a differential 
algebra [14]. 1Ve note that if there is more than one such 
operat,or (as in the case of partial derivatives of several vari- 
ables’), the operators can be used to introduce a Lit algchraic 
structure using the usual Poisson bracket. 

1Ve note t,hat virtually all standard function5 like trigono- 
metric functions, c-xponentials, roots etc. can be introduced 
in the new strnct,llre. For details WC rcfw to [?I. 

Besides the hands-on view of differential algebra just pre- 
sentptl. there is another more mathematical view of the sub- 
ject, that ultimately leads to very fascinating results. The 
arithmetic introduced in the beginning of the chapter has 
been known for a very long time in mathematics, it can be 
traced l)ack for at least 100 l-ears [15,16]. What capt,ured the 
inkrc3t of the Iri;ltllcnlatici;lns in these days was not so much 
the conncct,ion to sum and productrule of calculus, l>rlt rather 
that the structllrc has some remarkable ordering propert,ies. 

Indeed, the srt can be orderrd in the following way. Let 
(cf. h) axltl (c, d) be given; we say 

(u, b) < (c,d) if n < c, or (a = c and b < d) 

(a, b) > (c, cl) if n > c, or (a = c and h > d) 

(a, b) = (c, d) if n = c and b = d (15) 

So ic o&r t,o d~tkrruine ordering, we look first only at the, 
first comI)on(3ts. If thc,y alrratly differ, thcay alone tlct,crminc 

which of the nunibcrs is larger. Only if they are the same do 
\V<' conlpa““ t ll? srYwnt1 colllpollrlits. 

Frown this clcfinition it is clear that, for any (cl, b) and (c, a). 
(%xactlg one of the tlirw propcrtics always holds: (cc, b) = 
(c.(l) or (CL, !I’) < (c,d) or ((I. b) > (c,d). Furthermore, it 

follows that if (a, b) < (c, d), then for arbitrary (F, f) we halre 

(a,b) + (e:f) < (c,d) + (e,f), and for (elf) > 0 we have 
(Q, b) . (e, f) < (c, d) (e, f). Altogether, thP algebra assumes 
the rather special structure of a arithmetically ordered set,. 

Where in the complex mmihcrs, (0,l) was a root of 1, her-c% 
it has another interest,ing property. Looking a.t the ordering 
relations, we infer that for a real number r > 0, 

ihO) < ((41) < (r,(J) (16) 

Hence (0,l) lies “in between” 0 and wyery real number, 
i.e. (0.1) is infinitely small. 

Because of this we call d = (0,l) the differential unit. The 
first component of the pair (40, Q) is called the real part, and 
the second component is called the differential part. 

Now consider the relat,ionship 

f(x + Ax) = f(z) + AZ. S’(r) + Ax’ r(n) (17) 

where T(Z) is bounded. which is well known from CalcIJus. 
In our new structure we now have infinitely small quantities 
like d = (0,l) at our disposal, so one could be tempted to set 
Ax = rl. Because of d2 = 0, the relationship then reads 

f(x + 4 = f(z) + d f’(x) (18) 

It can be shown that the intuitive reasoning prcsentcd here 
is indeed justified, at least for a large class of functions f [17]. 

Now using the rules for the new arithmetic on ordered 
pairs, we infer 

f((z, 1)) = f(x + 4 = f(r) + d’ f’(.r, = (f(x),f’ls!) (19) 

and this is the same result a.s above. 
We restrict ourselves to these rough sketches. LVe note 

that the differential algebra discussed hcrc can be gcncralized 
in a very fundamental way to become a field (in Lvhich all 
divisions by nonzero quantities are allowed), and one can in- 
troduce calculus on this field in a similar manner as on thr 
original real numbers. H . o\\e>er, the field now cont,ains in- 
finitely small and large qllantities, and for exainple allows a 
direct treatment of delta functions [17]. So there is a simi- 
larity to the not so direct methods of nonstandartl analysis 

[18,19]. 
Conceptually, the computation of Taylor srrics maps from 

a tracking code is now a quite straightforward proceclrme: one 
just has to replace all operations in the tracking section. ill- 
eluding numerical integrators or whatever there might be, by 

the corresponding ones in differential algebra, and one auto- 
matically obtains a.ll the partial derivatives. 

The Differential Algebra Package 

In practice, the approach suggested here requires an ef- 
ficient implementation of the differential algebra and related 
operations. While the implementation of the operations for a 
fixed low order is rather simple, the ixnple~rir~ltation to arb- 
trary order and for an arbikary number of variables is quite 
involved and requires sophisticated logist,ic algorit,hms. 

The operations on the differential algebra discussctl in the 
last section have been programmed in FORTRAN by the all- 
thor. The package also contains a complete memory manag;c%- 
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rnmt, tool to store all differential algc>?,raic quantities. From 
the ILSPI.‘P bide, all differential algebraic objects are just point- 
ers to locat,ions mithin a. large memory area. 

The most irnport,ant fcnt~um of t,his l>a,ckage Icing or- 
tier ant1 variable indrpentlcncc~, a rigid storing scheme for t,he 
tleri:2tivrs i% proliil~itttl. and so lxaforc ’ any of the ol)crations 

can be performed, the pacltagc has to 1~: initialized by telling 

it a certain maximum order and munbcr of variables. 
Another irnport,ant critf:rion in the developnicnt~ of the 

p=Kk;tg~~ was spwl: using a mpliist,icatcd atltlrcsGug tu,li- 
nicll~(~ lol?;istic overhead is kept to a minimum. To he nmr~ 
spr-cific, tyljically abol1t 70 pmumt of the computing tiruc is 
spent on actual real arithmetic. 

In practice’ it frequently ha~,pms that vc>ctors conmirl mn.n) 

zeros. For rsamplc~, t,his is the case if a certain clmntity docks 
not dqrntl at all on one or more of the indepmtlcnt, varinblm. 
To gain sprcd in thrsc cases, a compression t~cclmiqur was de- 

vrlnpctl wlliclr mnps away all tllr zero coefficients, s1lch that 
i~ctd esrcl1tiorl tirric only dq~ends on the nlunl)c~r of 1101l%(‘ro 

tmrric~s. 
Bccallsr FORTRAN does not allow the introth~ction of ar- 

llitrarg tlata types antI opc1.atioris, all of the fllIl~liil1lClltill <)I’- 
c>r:ttions are cast into sul)routine calls. The allthor is amxrc- of 
t,llc ;~Ivarit:tges other pro$rnmnling l;ulgua~c:S lil;<> Cl+ Offc,r 
ill tllis pspct; ho\vcver, virtluilly all rsi<ting l)c~aIn tly1mnics 
cotlt:s and t,ools are n-rir ten in FORTRAN, so it, is 110~ wise: 
to iholat(- onesplf from this xvorltl. F~nthcrmorc, rlunour 1~1s 
it that tl:c. II(:W F()R.TRd4N irl~I)lr~llc~I~t;ttion SS will also allow 

arl,itrary tlnta tyl)es. 

To facilit,nte life until tllesc hctter days, a precomI)iler [20] 
has 1x-m drvrlopetl thnt allows clirect tlc:claration of (liffmmL- 
t,ial al;cl)raic q1mntitirs ant1 t,h& usi’ in formulas. It, tWms- 
form; all of the extensions 60 calls to the appropriate differ- 
mtial alg(~Graic routines and tlllls gcneratos stantlz,rtl FOR- 
TR-4N code. 1X’<, note. however, that the more tlifficlllt Imrt, 
namely t,hr algorithnls used for thr diffcrcntial algebra opera- 
tions thmlsc~lvesi, are rat,lier langrmge independrnt, and othrl 

laner~agc~ ltnw no si,qlificant nd~w~tagc met- currrnt, FOR 
Tti&. 

The Code COSY INFINITY 

Despite the fact that the differential algebraic tools de- 
scribed here have, been nrmuicl only for a. rather short, time. 
tlmxa arc alrcaady quite a fmv codc~s estrnc.t,ing high ortlu m;\~)s 
using tllcs tools. A4~i~o~~g oltlcr cotles, sc,vcTrzl! havc~ l)c~m ,111. 
gratlctl fox ~rlap cstractioli llsilifi the tliffcrmtial algrl)rw pre- 
conlpilcr. Sornc~ of r.hese upgraded codes are TEAPOT [%I], 
THINTRXC [X] and SI-STR.4C. Other cotl~ [‘LO,‘L‘l] \vvI‘(‘ 
rather spcx-ifically tlcsi~:ric~(l linring differmt,iwl algebraic mill) 
cWr;lctiorl in Iniiltl. 

The author himself is in th<> process of compl(:ting a. gcner- 
nlization of the fifth order code COSY [7,9] to arbitrary 0rdc.r. 
Tllis vc’ry gcncrxl code allows both thick and thin elcrnmts as 
~~11 as fringe fields. Furthermore, any analytically given or 
rnraslmd fi<altl distribution can lx used for the extract,ion of 
the map. .4ltogether, the goal was ut,rnost flexibility to alloy 
for the siinulation of all conccivat~lc field arrangfm~nts. 

The code can be used both for tracking and for IIIRI) cs- 
tract,ioIl with sillxcquent map maniplllationh inclutlirlg closc~l 

orhit correction. cnmp1tirtion of ttmc shifts atltl iilxrrimi!- 
arid othm cl1iaut,itic,s of iut<m,st 

The inpllt of thr code is it,sclf a ratllc~r 1’(>\v(srf\ll l;t~l~t~;~gr~ 
bvitli many drdicxt~cxl ftmtules fm slm?fic ~>,qxbm. in l);rrt i(- 
ular with all tliffcrent~ial alpcl)raic ol)c~rntioIls l)tlilt, ill. TIw 
syntax of the lang\mgc is c,pm~ to allmv for msy flltlirc~ c’stc,Ii- 
sions. 

Acknowledgements 
For discussions, rncollrngl~lller:t and >lll)port, I wallt to 

thank Alex Chaos Swalmn Ch;~ttc)~)ndll~n?;, Etieune Folest. 
Etl Hcighrvay, lJraltc,r Lys<~llko, arid H<‘~Illanll Tli)ll:Gk. 

References 

PI 

[21 

[3] 

[41 

PI 

161 

[71 

PI 

PI 

[lOI 

1111 

R. L. Warnock, R. D. Rllth. W. Gal><~lli~, alltl Ii. Ecli- 
lund. h4ethods of itabiiit,y analysis in ilollliIi(‘ar rrlc~c~lx~ii- 
its. Iii 1987 Accclerafor Phylsic~ S7c7rinr,f~ School. in print 

and SLAG FM 484G, 1989, AIP C 4x1 c rence Proceecli1igs, f,, 
loss. 

M. Brrz. Differential .4lg<:l,raic tlcscriptim oi tmlrll tly- 
naniim to very high or(lcm. Particle Acc~elr7.afoT,~. in 
print. 13%. 

Ii. L. Brow~l. Thr: Ion Optid I’m~mrrt. TRAA;SPORT. 
Technical Rtq>ort 91, SLAC’, 1979. 

T. Matsuo and H. hI;&,udn. Coqmcr prqpm TRIO 
for third order calculiLtions of ion trajectoric~s. hfa,,<~s 
Spectronaetry, 21, 197G. 

H. Wollnik, J. Brezina, and M. Berz. GIOS- 
BEAMTRACE, a program for tllc, tlr,sign of high I’<+ 
0ll:tion mass spmtronieters. In I’roct:etli~~g.~ AMCO-7. 
Darrnstadt, 19%. 

A. J. Dragt, L. 11. II&y, F. Keri: and R. Ryue. 
?IIARYLIE 3.0 - a program for uo:~lirxxr axml!.<ib c,f ii<-- 
celerators and lmunlines. 1EEEZ Tmns~~ctin7~~ on Nnclmr 

Science, Ns-3,5:2311. 19%. 

M. Berz, H. C. Hofxnann, and H. Wollnik. COSY 5.0, the 
fifth order code for corp~iscnlar optical syst,ems. Nnclmr 
hStT7UWdS (Id !dEthOdd, .4258:40’, I%?. 

nl, B.-m. and H. Wollnik. Thta pr<~i?;ra~u HASIILTON fol 
thr, arlalytic sohit,ion of the cquaticxl~ of motion in l)arti- 
cl? optical systcrns t,llrongll fifth ortl(Br. Nuc/<u17. 1,rf,.\tl,1~- 
mewts und MetlLorls, .u.x:3G:t, 1387. 

H. Wollnik, B. H, ,t ni ,xLrmn. anti 11. Bcrz. Priucil>lch IP- 

hind GIOS and COSY. AZP C071f(T’mcc Pmrecriinq.i, iii 
print, 1’388. 

hf. Berz. The, clc,scril)tion of pm t,icl<> ;~c~c.c~lc~i~tors iwing 

high order pert,url)ation thcmry on malli. 111 167 il~r:l- 
U’UtOT PhySiC” SU77kVf,eT ,?ChOOl, i7k PTilkt, .kIP CO1lf(‘WllW 

Procerclinp, 19SS. 

M. Bcrz. Diffcrcrltial Algchmic treat,mcnt, of l)~:lln tly- 
n;unics to very high ordrrs inclliclili~ applications to 
spntc~cliar#e. AIP COiXf~Tf:7Wr: Pmcc riliny.s. in I)rint 198X. 

PAC 1989



[I?] h4. Bmz. DifferenGal Algebraic description and analy- 
sis of trajcctorics in vacu~un ekctronic drviccs including 
~~)n<~<~rhil~gc rffwts. IEEE Tmnsoctzons on Electron De- 
~rrices, 33-11. 103s. 

[13] >$I. Bwz. Tllcl Inethod of power swim trx~king for the 
Inatlifmatical tlwcription of lwam dynamics. NllKleaT 

Iir.~lrumenls and Methods, A25S:431, 19S7. 

[14: 3. F. Ritt. DzfSc~entinl Alqebm. Arnrrican Mntl~cnl;tticnl 
Society, ~~~ashhgton, D.C.. 1950. 

[15: P. Du Bois-Rqm~ond. Mrrthrrnati.5cht:~r. ilnn.alen, 11:. 
lS77. 

[lG] 0. sto1z. hlotlrt.rrLuti.~clbr A7mhl, 39, lSD1 

[IT] 11. Berz. .4w~Ipss nu,f einer ~liciltarci~~?r~cd~,~~~~~,~ Er- 
tcv~tc~ung rler TY ellcn Zaiden. Report (in German), Un- 
vcrsi’iit, GicGIl. 198s. 

[lS] D. Latlg\x;iiz. Ein IVeg zur Nollstalltl;,rcI-.41iitlysi~. 
.Ti~lt7.(.‘ib~7.i~/1tti tlcr De~utschen n~~rti~enbntigche72.~ Tiereiwi- 
‘Ju’nq. 73:GG. !D73. 

1191 .I. Rol,insoll. Ton-sianthrd analysis. In Procerdin~~~ 

Royal Acnderr~y Amstdarn, Seric.~ A, ~>agc~ 432; 1361. 

:20] 51. Bcrz. The Diffwential Algebra FORTRAN pwcom- 
piler D.4FOR. Technical Report 24T-3:TN-S7-32, Los 
.4l;unos Sational Lnl)orntory, lOS7. 

[?l] L. S~~lm~ilin,q-r and R. Tahnn. TEAPOT, a Olin el(w~cmt 
1xoF;ranl for opG(.h antI tracking. Particle Accelerator.~, 
22:35. 1987. 

[??I 13. T. Lrcman ant1 E. Forest. UGc,f Description. of the 
im(.kiny codrcu THINTRACK and FASTRACK. ‘Tcchni- 
~1 Report SSC133, SSC’ Cmtral Dmign Grolq,, Brrkr- 
hay. Ca, loss. 

[23] E. Forest and H. Nishinnlra. t,llrwa procwxlings. 

[?4] S. PC-ggs ant1 J. Irwin. these proceetlings 

1423 
PAC 1989


