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Introduction - the driven differential oendulum 

The angle 9 that a rigid gravity pendulum driven by a 
sinusoidal torque makes with the vertical satisfies 

d20 
p + (2x: QI)2sin(0) = D cosQx QM 1) [11 

The undnven average tune Qfree is QI for small angle oscillations, but 
decreases to zero as the amplitude is increased to x In general the driven 
system behavior depends on D and QM, the amplitude and tune of the 
driving torque. One of four dynamical phases which exist in the (D,QM) 
parameter space exhibits massive chaos. The tune modulation part of the 
E778 nonlinear dynamics experiment[l] tests the validity of the theoretical 
models which describe these phases, in an accelerator representation of this 
cxtrcmcly simple system. This paper describes the models, and presents 
some of the experimental results. If the motion is not chaotic, but periodic, 
the general form of the solution to [I] is a double Fourier s&es expansion 
in Qfree and QM. However, the experimental observable in E778 is the 
signal observed at a beam position monitor (BPM). which is averaged over 
the free phases of a distribution of particles. Hence the interesting solutions 
are expanded in only the driving tune. There is a family of possible 
solutiom, laheled by the intiger k, 

8 = k2x: (QM t) + 5 cn cos(n 2x: QMt) 
n=l 

PI 

where the coefficients c,, arc functions of D, QM, and QI The 
pendulum rotates exactly k complete turns in one modulation period. 
Depending on Ihe value of (D,QM), the k-th solution is stable or unstable 
to small free oscillations. 

In the tune modulation system, the solutions correspond to a 
family of resonance sidebands. Dercrmining the stability of the sidebands 
is a central problem for the theory. Just as longitudinal motion in RF 
buckets is an intcrcsting represenradon of the universally recurring 
sfandard mup. the effect of tune modulation on accelerator resonances is 
interesting as a representation of the driven differential pendulum. In 
conlrast to the longitudinal problem, tune modulation plays an important 
role in limiting the performance of proton storages rings like the SSC [2-61. 

Five uncenurbed islands - the sin& resonance Hamiltonia, H5 

First, it is necessary to develop a vocabulary for the one 
dimensional motion near the 2/5 resonance which is observed in E778. 
The convenient action angle variables, (J,$), are related to the horizontal 
displacement and angle. (X,x’), at a fixed d. by 

(:f;;::‘;;:;;; ) = [ $; \( :, ) PI 
\ a ” / 

where a and p arc Twiss paramctcrs That is, J behaves much like the 
bctatron amplitude, while I$ is the betatron phase of a trajectory under 
study. If the base tune Qo is close to 2/5, motion is well approximated 
by Lhe the single resonance Hamiltonian [7] 

Hj = 2~ (Qo -$ J + Vd2 - V55 J5’ cos(5@ + $5) [41 

*Visitor from the Institute of HEP, Academia Sinica. Peking. 
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This is just shorthand for the five-turn difference equations of motion 

(ilt+5 = (at + s[-$), r51 

demomtrating that t is an integer divisible by five. 

The meaning of the three terms in Hg becomes clear when the 
partial differentiations in [5] are performed. The first term leads to a small 
constant net phase advance of 1On (Qo - 2/5), but the second term causes 
an advance of IO V4oJ. linearly proportional to the action. That is, the 
amplitude dependent tune is 

Q(J) = Qo + v4o J 
( > 

161 lc 

consistent with the expen’mentally observed variation 

Q = Qo - 7xl@a2 171 

when Qo = 0.42, and the amplitude a is in millimeters. The resonance 
action JI is found by solving [h] with Q(JI) = 2/S It is now convenient to 
rewrite Hg as an expansion around JI, 

H5 = $I I2 - V cos(5$) PI 

where the value of $5 has been arbitrarily set to zero, and 

I = J-JI. u = *vj(). v = v55 ~~512 191 

Substitution of [8] into [5] (with J replaced by I) shows that (I,+) = (0,O) 
is a fixed point-a trajectory launched then: is stationary. In a region close 
enough to I = 0, then, Hg may be considered as representing differential 
equations of motion, continuous in t, which agree well with the difference 
motion whenever t divides by five. In this approximation 

[ +J= l--F) = (-‘;i’:(‘“‘) [lo] 

or, in terms of a single second order equation of motion, 

& -g + 5 VU sin(5@) = 0 L]]l 

which is very reminisccnl of [ I]. The small amplitude motion is 

I 

(1 ( 

v ‘R 
5 u 0 

sin(?nQlt) 
= cpo 

I 

[I21 
9 cos(2xQtt) 

where the island rune QI is given by 

Q, = k (U V)t/2 1131 

Figure 1 shows the presence of five resonance islands (in normalized X,X 
space) under simulated E778 experimental conditions. 

The apparently continuous sequence of dots which follow a 
single trajectory in Figure 1 are represented in the theory by contours of 
H5. which describe a parabolic valley along the I-axis, modulated along the 
@axis by the cos(5g) term. This leads to five local minima separated by 
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Figure 1. Surface of section plot from a simulation of E778, with islands 
at an amplitude of about 5 mm (p = 100 meters). 

five saddle points, corresponding to five stable and five unstable fixed 
points. The island half width is found by equating the saddle point 
elevation with the elevation at $ = 0, 

Iw = 2(;)1’2 1141 

Figure 2 shows the BPM signal observed when a proton beam is kicked 
into a location which overlaps a resonance island. After an initial gaussian 
decay, due to the tune spread across tire beam, apersistent signal remains. 
The ratio of the persistent signal to the kick amplitude approximately equals 
the fraction of beam trapped in the island. This offers an experimental 
means to measure Iw [ 11. 

Ftve islands wtth tune mod&t&B 

If a set of quadrupoles is perturbed by a small sinusoidal 
current, the base tune is modulated according to 

Qo = Qor~ + qsin(2xQM t) I151 

where q and QM are the tune modulation amplitude and tune. Tune 
modulation is included in the resonance Hamiltonian by adding a single 
term to equation [8], giving 

H5 = 2x q sin(2n QM t) I + ;Ll I2 - V cos(54) [I61 

Now H5 is time dependent, so it is no longer conserved, and it is not 
possible to picture the motion by plotting its contours. The two first order 
equations of motion are 

= b c -4 -4 
2 -,- 
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Figure 2. Typical data from the E778 experiment, showing both 
Gaussian decoherence and a persistent signal. 

- 5V sin(5$) 

2x q sin(2xQMt) + HI 
[171 

while the single second order differential equation in 4, 

d% z + (27rQI)2 T = (2~)~ qQM cos(2x QM t) ]181 

is explicitly analogous to the driven pendulum equation, [I]. The family of 
solutions periodic in QM is now 

5 @ = k 2x(QMt) + 5 cu cos(n 2x QMt) (191 
n=l 

identical to [2], with 54 replacing 0. The tune of the k-th solution 

&= $+k<dg> = ; + ky PO1 

demonstrates the possibility of a family of stable sidebands. Each sideband 
has five islands, at an action Ik given by Q(Ik) = Qk. so 

Ik = k$+. Pll 

If solution k is stable, then persistent signals should be observed at Qk 
when a beam is kicked on top of one of the sideband islands. 

The small angle k=O solution is illuminating. It is given, for 
all QM. by 

I = - 
Q12!iM2 ? 

sin(2n QMt) 

Q = COS(2X t&t) 

WI 

At constant q, the action’amplitude goes to (2rrq)KJ for small QM and to 
zero for large QM, while the phase amplitude goes to zero and s/QM for 
slow and fast modulation. This explains the “amplitude modulation” and 
“phase modulation” labels in Figure 3, which shows the four dynamical 
phases in the (q,QM) parameter space. The solid line with the pole in the 
figure. 

(241 

is the small angle boundary below which [23] applies. Rigorous analysis 
(below) shows that this is the stability boundary for the k=O solution in 
the slow modulation limit. Rigorous analysis in the large QM limit shows 
that, although the k#O sideband islands are stable, their size is 
insignificant below the small angle boundary. It is necessary to rely on 
numerical iterative solutions and simulations when QM=QI Simulations 
and iterative solutions of [ 191 in [ 181 appear to agree that below QI [24] 
marks the limit of stability of the k=O fundamental. Just above QI the 
k=O solution is stable for all values of q . Thus, the small angle boundary 
has different physical implications above and below the pole. The iteration 
scheme also indicates that none of the k#O sideband solutions are stable 
below Qr, but that all of the solutions are stable above it, with the possible 
exception of a small region near the pole. 

Slow modulation, QM << QI 

If the tune changes adiabatically slowly, it is reasonable to 
approximate the rate of change as constant, at its most stringent maximum. 
The Hamiltonian in equation [ 161 then becomes 

H5 = (2x)2qQM t I + ;U I2 - V COS@$) WI 

This is still time dependent, but now a canonical coordinate transformation 
is possible, from (l,@,H5) to (T,s,fig). making fi5 time independent. 
Specifically, the generating function 

F&it) = WI 
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Figure 3. The four dynamical phases in the tune modulation parameter 
space (QM,q), for a typical QI = 0.0085. The region 
accessible to the E778 experiment is shown by the dashed line. 

gives, by its definition[8], 

i E -25 = I + f,t, 
a? 

(0 E -3F3 yq-=T ~271 

fi5 E H5 + 2 = &Ii2 -VW&)---E;i; 

While the old and new phases are identic&, the new action drifts relative to 
the old action at a constant speed. The .$I term in the new Hamiltonian has 
serious consequences for me stability of the k=O fundamental island chain, 
Pictorially, this non-periodic term corresponds to a constant slope along the 
quadratic Hamiltonian valley. If this slope is steep enough. there are no 
longer any local minima. There am no stable islands at all if Id > 5V. or 

1291 

In the slow limit, this corresponds to the small angle boundary [24] 

Fastmodulation, QM >> QI 

In this region, a time independent Hamiltonian is found by fust 
applying the generating function 

Fj(I,<.t) = - 15 - &UX(2nQMt)I l301 
which gives 

H5 = ; lJi2 - V cos(55 + &0s(2X QMtlt)) ]3’1 

= iUi2 - V Gi&) cos(5$ + i 2x QM~) 
i 

where the Ji are integer order Bessel functions. The Hamiltonian is made 
time independent by concentrating on the vicinity of the k-m sideband, near 
the action Ik, and averaging the sum in [31] over one modulation period, 
to give 

H5k = &‘&Id2 - vJk(~)cos(s+) ~321 

(without overbam. and with a shift of origin). This differs from the simple 
form 181 by the Jk factor, which determines whether or not the k-th 
sideband is significant. As a rule of thumb, Jk(A) = 0 if IAl < Ikl, so 
sideband k is significant if 

q > Ikl 1331 

The right hand side of 1331 is the separation of the sideband tune from the 
fundamental resonance tune, corresponding to the sensible physical 
condition that, for the resonance to be felt near an action Ik. the tune must 
be modulated far enough to cross the fundamental. 

The sidebands are isolated from each other if their separation in 
action, given by [21]. is larger than the sideband width, given by [ 141 with 
JkV replacing V . Chaos appears if the sidebands overlap, spanning the 
action range of sidebands of significant size. It is easily shown[3-61 by 
further approximating Jk, that sideband overlap is expected if [33] is true, 
and if 

QM 3’4 (5 df4 < GOI 1341 

This boundary is the nearly vertical solid line in Figure 3. Because of the 
casual Bessel function approximation, sidebands overlap a littIe earlier or 
later than this semiquantitative condition suggests. 

Figure 4 shows the effect that entering the chaotic region has 
on the measured lifetime of E778 persistent signals. A decay time of 
47,000 tums is approximately one second in the Tevatron. The dramatic 
increase in the decay rate when the boundary is crossed is consistent with a 
fit to the data of QI = 0.0085 . This method of measuring QI is time 
intensive, since each data point corresponds to a two minute injection cycle 
of the Tevatron. Other measurements of QI have been made, by Fourier 
analysis of the phase, and of BPM signal sidebands, and will be reported 
elsewhere. Measurement of QI in a single machine cycle is hopefully 
expected in the near future, opening up the possibility of a rapid 
comprehensive scan of resonances across a relatively wide range of tunes. 
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Figure 4. The effect of tune modulation on the persistent signal, for the 
data plotted in Figure 3. The decay rate is significantly larger 
in the chaotic region. 
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