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1. Introduction 

In a recent report 111, the results of various 
mapping techniques were compared with the exact 
solution of a nonlinear equation. For this purpose, the 
equation of motion of a pendulum was chosen, for which 
the exact solution can be expressed in terms of 
elliptic functions. In all cases discussed in this 
report, the relative errors of the solution obtained by 
rather high-order mapping reached 10% after a few 
hundred (or at most thousand) periods of oscillation, 
and seemed to increase exponentially, so a few more 
periods would give completely wrong results. 

Such mappings are used widely for the design and 
modelling of particle accelerators and storage rings. 
A limitation to low numbers of periods would therefore 
have far-reaching consequences, in particular for 
proton storaqe rinqs where - due to the neqliqible 
effect of radiation-damping - a large number of turns 
need to be tracked. After verifvinq those claims. it 
thus appeared important to us to determine the exact 
conditions under which such limitations are valid. 

A number of factors influence the speed of 
divergence, such as making the maps energy conserving 
and/or svmulectic. or the distinction between amolitude 
and phase errors..However, the most important result of 
our study was the realization of the importance of the 
discretization or "stepsize" in the independent 
variable (usually time or distance along the circum- 
ference). Not only does the convergence become worse 
with ;ncreasing stepsize as expected, but there exists 
a limiting step-size above which mappings diverge to 
all orders. The examples given in the above-mentioned 
report were all computed for a stepsize of 0.8 periods, 
well beyond the limiting value for the pendulum (about 
0.42 periods for a pendulum starting at 90'). 

While these results explain the observed 
behaviour, they still limit tracking by Taylor maps in 
the presence of nonlinearities. A too large stepsize 
leads invariably to divergence, and hence care must be 
taken when many nonlinear elements are concatinated. In 
general, a comparison of results with different 
stepsizes will show whether the limit has been 
exceeded. 

In this report, we compare the exact solutions for 
the one-dimensional motion in a sextupole - still 
expressible by elliptic functions and inteqrals - witn 
Taylor maps in the stepsize of the - independent 
variable. This permits us to obtain explicit criteria 
for the convergence of the mapping. We also discuss 
extension of this model to E-dimensional motion and to 
more general multipoles, and the technique of tracking 
to computer accuracy. 

2. Mapping by Taylor-series 

The differential equations describing the motion 
of a charged particle inside a magnetic multipole are 
nonlinear, autonomous, coupled equations which in 
general permit no closed form solution. A common 
technique to obtain approximate solutions is to esta- 
blish a functional relation between the entrance and 
exit coordinates and mcmenta for the given multipole : 

1, = t (io, As) (1) 

where components of r are 
functiontsheof the components of k,. 

expressed as 
Here As stands 

for the length of the elements hence 8, = 
k(As). A common method to create f is to 
expand it into a Taylor-series w.r.t. the entrance 
coordinates x0 and ua = dx/ds(O). As an example we take 
the horizontal motion in a sextupole. Neglecting the 
effect of end fields, the equations for the horizontal 
motion inside a thick sextupole are : 

x = u 

. 
u = - clxL ; a=Zk' 

Using the second order "ansatz" : 

(2) 

mlxO + vu0 + milx0 
L 

f(k, ,As)= 
+ m12x0u0 + m2LUo 

L 

m3x0 + m4u0 + m33x0 
2 

+ m34xou0 + mb4u0 
2 (3) 

inserting Eq. (3) into Eq. (2), and comparing the 
coefficients of like powers in x0 and u. we uniquely 
determine the coefficients mi and mij as functions 
of the sextupole length As. The results are : 

m l= m4= 1, ml = As, m3 =o 

m Il= -a/2 AS’ , mll= -u/3 As3, mll= -a/I2 As4 (4) 

m33= -a AS, m34= 
2 -CL As , m44= -a/3 As3 

This method is used widely in tracking programs and has 
first been introduced in Ref.121. An alternative method 
has recently been used in Ref.[3] : it consists of 
expanding the mapping in terms of the element length As 
instead of the entrance coordinates. The advantage of 
this method is that the expansion coefficients can be 
found directly by repeated differentiation of the 
equation of motion. To demonstrate this we rewrite (2) 
as a single second order equation : 

. . 
x = -a XL (5) 

Differentiating Eq. (5) twice and writing x as a 
Taylor-series up to the fourth order, we find : 

x(As)=xo+ Asuo -4 x;As’ - 2 xouo As3 -s (u;-ax:)As4 

2 
u(AS) = u. - a xOAs - o xouO AS' -2 (,;-a,;) As3 (6) 

By comparing Eq. (6) to Eqs. (3) and (4), we realize 
that all second order terms found by expanding w.r.t. 
xo and u. are also contained in Eq. (6). In addition, 
Eq. (6) contains some (but not all) third order terms 
in x0 and uo. The described method can easily be 
extended to very high orders, e.g. all terms up to 
order 20 have been computed in Ref. 31 by using an 
algebraic manipulator like REDUCE [5 . To check the J 
quality of this method, we compared the results with 
the exact solution of Eq. (5) which has been derived, 
e,g. in Ref.[3] : 

x (5) = B 11 - 3112 * 1 (7) 

where e3 = xq3 + 3 uoL/(2a) and the argument of the 
Jacobian elliptic function cn is u = F(eolm) - YS, 
where cos o. = [L3(3’12-1) + xoj/[8(3'lL+1) - x0], 

Y ' = 2@/3'iL, and m = '1~ + 3'f2/4. 
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In order to make the solution bounded, we enclosed 
a long sextupole by two short quadrupoles. Such a 
configuration simulates e.g. sextupolar field 
components in machines with superconducting dipoles. 
Figs. 1 and 2 show the phase space distance d (in 
percent) between the tra'ectories obtained with the 
exact solution for sextupo es (Eq.(7)) and a 10th and a 3 
14th order mapping (in As). A 10% error is reached 
after 2000 periods for the 10th order mapping, but only 
after 64000 for the 14th order. 
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Fig.1: Phase space error d [%] for mapping order N=lO. 
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Fig.2: Phase space error d I%] for mapping order N=14. 

3. Limitations of Taylor mappings 

From the results obtained so far, it seems as if 
one could obtain any desired accuracy for the solution 
of nonlinear equations of motion by truncating the 
series of the mapping at sufficiently high order. 
However, it is a well known fact that many nonlinear 
differential equations, including the equations of 
motion inside thick multipoles, have solutions with 
poles which depend on the initial conditions [4]. As an 
illustrative example consider the equation : 

y'(x) + 2x y'(x) = 0 

which has the solution : 

y(x) = (x' + y;y 

(8) 

(9) 

It has a pole at x = iyo-'jL i.e. depending on yo. It 
is a basic property of Taylor-series to diverge if the 
distance from the point of development to the point of 
evaluation is larger than that to the closest pole in 
the complex plane. E.g. if we represent the solution of 
Eq. (8) by a Taylor-series as : 

Y(X) = 
7 

IGO 
Bn(Y0) X” (10) 

this series will diverge for 1x1 > yo-'IL. 

From the exact solution for the motion inside a 
thick sextupole (Eq.(7)), we easily detect a pole on 
the real axis by setting cn(u = -1, from which 
follows the distance to this For u. = 0 we find : 

AS = -2LLml = b 5 16 

(a x&J (a Xo)'IJ 
(11) 

The Taylor series representing the solution of Eq. (5) 
will diverge if As becomes larger than this critical 
value. We can generalize the limit given by Eq. (11) to 
the case of arbitrary initial conditions x0 and uo. As 
expected, AS decreases as either x0 and ua increases. 
In Fig. 3 we show the limiting As as a function of x0 
and uo. 

Wh[ml 
CX=l 

Fig. 3 : Maximum discretization for a lD-sextupole 
as functions of xo and uo. 

In this example, the breakdown of the Taylor 
series at a certain limit of As can be understood 
easily by the fact that the solution becomes 
infinite for a real value of As. However, for complex 
poles, the breakdown of the Taylor series is not so 
obvious. Consider for example the pendulum motion : 

'i + sin x = 0 (12) 

This equation is discussed in detail in ref.[l] and we 
just give the results. The exact solution is : 

x(t) = 2 arcsin [k sn(K(m) + t/m)] (13) 

where m = kL = sin'(xo/2), and K(m) is the complete 
elliptic integral of the first kind. Although x(t) 
stays bounded for all (real) values of the time t, the 
associated Taylor series diverges when At exceeds a 
limiting value. The explanation for this effect is that 
the Jacobian elliptic function sn(u(m) has a pole on 
the imaginary axis : 

U p = i K(l-m) (14) 

The associated limit for the discretization of a 
Taylor-mapping for the pendulum in the case of 
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uo = 0 is then given by : 

At’ = KL(m) + KL(l-m) 

For xo = n/2 this yields At = 0.42 x 2rr. In order to 
illustrate this interesting behaviour, we plotted the 
terms of the series as a function of the order N for 
At = 0.2 x 2n, 0.42 x 2~ and 0.8 x 2~ (Fig. 5). The 
first curve is well below the critical limit and hence 
a decrease of the terms with order can be seen which 
indicates convergence. The second case is just at the 
limit of convergence, while the third one obviously 
diverges. 

c ” 
10 t- 

&/2lT 

c - 1 

5 10 15 20 
N 

Fig. 4 : Taylor terms for the pendulum as functions of 
the order N for three discretizations 
At/h = 0.20, 0.42, 0.80. 

It should be noted that the phenomenon of complex poles 
arises also for the case of a pure octupole. This is 
described by the equation : 

‘; + y x 3=0 (16) 

with the solution for u. = 0 given by : 

x = x0 cn ( yllL xo s( -$ ) 

For the sextupole (Eq. 7)) there exists only a real 
pole because the elliptic function occurs in the 
numerator as well as in the denominator, turning the 
complex poles into removable singularities. 

4. The 2-D sextupole and tracking to computer accuracy. 

Two dimensional motion in a sextupole is described 
by the nonlinear system of equations : 

l ; = -a (xLmyZ) (18) 

'4 = 2a x y (19) 

The exact solutions are not known, and therefore also 
the location of the poles in the complex plane is 
unknown. Since the 1-D case is contained in Eqs. (18) 
and (19), an upper limit for the discretization AS iS 
given by Eq. (11) for u. = yo = vo = 0. We can apply 
the method of repeated differentiation to Eqs.(l8) and 
(19) as before. Using this technique, 
tracking-code (ACTP). Before tracking 

wes:r,;;; the 
a 

preprocessor determines the necessary. order of' the 
mapping (w.r.t. the sextupole length As) which solves 
Eqs. (18) and (19) to computer accuracy. This means 
that the Taylor term of one order higher must be 
smaller than the smallest number the computer can deal 
with in addition. It is necessary to input the range of 
initial conditions for which this accuracy should hold 

(e.g. the physical aperture). Fig. 5 shows an example 
of a number of Taylor terms created by a random choice 
of such initial conditions. As can be seen the 
necessary order in this case is N=12 for a 16 digit 
computer accuracy (IBM - double precision). If no 
converegence in this sense is found up to 20th order 
(the limit of this code), the sextupole will be split 
into two equal pieces by the program. 
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Fig. 5 : Taylor terms as functions of the mapping order 
for a random set of 100 initial conditions 
distributed across the entrance plane of a 
PD-sextupole. 

5. Conclusions 

The comparison of Taylor-series mappings with the exact 
solution of the one-dimensional equations of motion for 
a charged particle in a sextupole permits the 
derivation of explicit expressions for the 
convergence. We found the existence of a limiting 
step-size, which depends in general on the initial 
conditions (xo,uo) but not on the order of the - 
mapping. 

These results are similar for all multi-polar 
elements, and restrict tracking of accelerator lattices 
by Taylor mappings to a maximum stepsize. Hence, 
concatenation of too many nonlinear elements will 
become divergent even for arbitrary high orders in the 
expansion of a map. This restriction of concatenation 
applies also to kick-codes, although the zero length of 
a single element guarantees that the mapping does not 
diverge element by element. In practice, the 
convergence of a concatenated map can be tested by 
comparing results for different step sizes. 
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