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Summary 

A complete third-order description of a charged 
particle optical system must include a comb:;;: 
function bending magnet. The magn::? field can 
dipole, quadrupole, sextupole, octupole terms. 
Midplane symmetry is assumed. Each additional order 
in the optical analysis requires inclusion of an 
additional multipole in the field expansion. First-, 
second-, and third-order expansions require 
quadrupole, sextupole, and octupole terms 
respectively. Third-order matrix elements may be 
derived by an iterative Green's function solution of 
the differential equations of motion. Third-order 
transfer matrix elements arise not only from 
third-order terms in the equations of motions, but 
also from the cascading effect of second-order terms. 
Solutions have been derived and have been incorporated 
into the computer programs TRANSPORT and TURTLE. 

Introduction 

Combined function bending magnets have been a 
standard component of accelerators and beam lines 
since the beginning of high-energy physics. Early 
synchrotrons such as the Cosmotron or the Bevatron 
used weak focusing where the normalized field index n 
took a value between 0 and 1, but distinctly different 
from .5. The invention of strong focusing led to 
combined function bending magnets where the absolute 
value of n was much greater than 1. The magnets then 
alternated in the sign of n, leading to more effective 
focusing and smaller apertures than was the case for 
accelerators with weak focusing. The AGS at 
Brookhaven and the PS at CERN were constructed 
according to this principle. 

Still higher energy accelerators at Fermilab and 
CERN led to separated function design. The bending 
magnets had uniform central field and the focusing was 
done by a separate set of quadrupole magnets. These 
accelerators required such a large number of magnets 
that it was still a good approximation to consider 
both bending and focusing functions to be distributed 
uniformly about the circumference of the ring. In 
addition, the tune of the machine could now be 
controlled independently of the bending magnets. 

Still the combined function bending magnet 
remained a useful tool for accelerator builders. The 
larger accelerators required smaller accelerators as 
booster devices. The Fermilab booster uses combined 
function bending magnets. The SLAC linear collider 
requires that the bending functions be as distributed 
as possible to limit energy losses due to synchrotron 
radiation. The focusing function must then be 
incorporated into the bending magnets leading to 
combined-function bending magnets. 

The theory of charged-particle optics1 was 
extended beyond the line2r analysis in a paper by 
Brown, Belboach, and Bonin. Additional analysis was 
performed in a SLAC summer study by Streib. The set 
of second-order matrix elements for the transverse 

particle coordinates and their4 longitudinal 
derivatives was calculated by Brown. Among other 
things, a second-order analysis allowed correction of 
the momentum dependent focusing of the beam by a 

curvature of the pole face of the bending magnets. 
The longitudinal matrix elements5were later calculated 
by Brown, Servranckx, and Carey. 

In this paper we describe the calculation of the 
third-order transfer matrix elements of the central 
portion of a combined function bending magnet. The 
third-order representation of the fringing field will 
be describeg in a separate paper in this conference by 
Sagalovsky. Let us begin with a description of the 
configuration of the magnetic field and the equations 
of motion. 

Representation of the Magnetic Field -- 

The assumption here is that the field 
configuration possesses midplane symmetry. By this we 
mean that the scalar potential from which the magnetic 
field is derived is an odd function of the vertical 
distance from the magnetic midplane. Transfer matrix 
elements have been calculated to second order for 
cases of violation, of midplane symmetry and are 
described elsewhere. 

In the magnetic midplane a third-order expansion 
of the magnetic field is given by: 

Bx = 0 

By = Bo(l - nx + px2 + 7x 
3 + . . . 1 (1) 

Bs = 0 

Because of Maxwell's equations, the midplane 
expansion of the magnetic field uniquely determines 
the field at all points off the magnetic midplane 
also. No additional coefficients are required for the 
full representation. The simplest method of 
determining the complete form is to require the 
magnetic scalar potential to satisfy Laplace's 
equation. When this is done, the complete form of the 
magnetic field is: 

Bx = B. 
I 
- nhy + 2ph2xy + 37h3x2y (2) 

- (7 + $ + &)h3y3 
I 

By = B. - nhx + fi2x2 + i(n-2p)h2y2 33 + 7h x 

- $(67+2P+n)h3xy2 
I 

Bs = 0 

Maxwell's equations continue to require the 
longitudinal component of the field to be zero since 
we are dealing with only the central portion of the 
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field where there is no longitudinal dependence of 
either of the transverse components. 

Equations of Motion -- 

With no approximations or truncations by order, 
the equations of motion of a charged particle in a 
magnetic field are: 

x" - h(l+hx) - x' 
T'2 

x'x" + y'y" + (l+hx)(hx'+h'x) 
I 

= 
Y 1 (3) 

y’ - L 
T'2 

+ y'y" + (l+hx)(hx'+h'x) 
I 

= 4 T’ 
P 

(l+hx)Bx - x'Bs 
i 

All derivatives are with respect to distance s 
along the reference trajectory. The charge of the 
particle in question is q. The momentum p is given in 
terms of the reference momentum p and the fractional 
momentum deviation 6 as p = p (;+a?. The quantity h is 
the curvature of the refe?ence trajectory in the 
magnetic field. It is the reciprocal of the radius of 
curvature. In a uniform magnetic field h is constant 
and therefore h' is aero. The letter T represents the 

distance along a particular orbit. Its derivative T' 
then is the differential ratio of distance along a 
given orbit to that along the reference trajectory. 
The value of T' is given by 

TJ2 = xJ2 + yJ2 + (l+l-,~)~ (4) 

From the above equations and the third-order 
expansion of the magnetic field, we can derive the 
complete set of equations of motion expanded to third 
order. 

x" + (l-n)h2x = h6 + (2n-l-6)h3x2 + (/7-&)h3y2 

+ ;h(x' 2 - yJ2) + (2-n)h2x6 - h62 

+ (26+7-n)h4x3 + (37 + 3,9 - $)h4xy2 

2 12 2 + ;(4-3n)h2xx' 2 + -nh xy' 

- nh2x'yy' + (p-2n+l)h3x26 + i(n-2/7)y26 

3 + -hx' 2 26 ; 26 + -hy' 

+ (2-n)h2x62 + h63 (5) 

yn + nh'y = 2(8-n)h'xy + hx'y' + nh2y6 

+ (3T+4/&n)h4x2y - i(67*2P+n)h4y3 

122 + (n-2)h2xx'y' - %nh x' y - inh2yy'2 

+ 2(n-p)h3xy6 + hx'y'6 - nh2y62 

Solutions 

The solution of the equations of motion are 
obtained by iteration. 
Xl x" Y’ and y' 

The first-order solutions for 

of 
are substituted into the right side 

equations (5). The inhomogeneous non-linear 
equation is then solved by considering the right side 
to be a driving term, and expressing the solutions as 
Green's function integrals of the driving terms. 
first iteration 

The 

contains 
is complete to second order and also 

driving 
the single integrals of the third-order 

terms. A second 
substituting this solution into 

iteration involves 
the right sides of 

equations (5)The The second-order solution is 
unchanged. third-order solution contains 
additional terms which are the double Green's function 
integrals of products of the second-order driving 
terms. 

Let the components x. 
X' 

represent the six-vector x, 
, y, y', g, and 6. The ireviously undefined quantity 

e represents the longitudinal separation between a 

given particle 
trajectory. 

and one following the reference 

further, 
We will not discuss this quantity any 

instead using the letter e as an index over 
which summations can be made. The two differential 
equations (5) can now be schematically represented by 
the generic equation 

2 x? + k.x 1 Ii = f DijXj + Ftijkxjxk 

+ 2.. ijkF.xjXkXe 

The solution to third order may be represented as 

x;(l) = IRijxj(0) + 
j 

ET 
jk 

ijkxj (O)xk(O) 

The first-order matrix elements R, the second-order 
terms T, and the third-order terms U are all functions 
of position along the beam line. The single 
first-order term on the right side of equations (5) is 
the expression h6 which is the driving term for the 
first-order dispersion. The value of 6 is not 
affected by iteration, 
higher-order effects. 

so this term produces no 
The second-order matrix 

elements T are given as single integrals of the 
driving terms E by: 

T (8) 

The third-order elements are given as double integrals 
of products of second-order driving terms plus 
integrals of third-order driving terms. 

single 
Here we write 

the expression for the U matrix in terms of the R and 
T matrices. There are no explicit double integrals in 
the below equation since the T matrix is a single 
integral. The double integrals occur because the T 
matrix elements are themselves placed inside a Green's 
function integral. 
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t 
U ijice= 01 

I 
G.(t,T) ZE. R .(r)Tnke(r)dr 

mn lmn ml (9) 

i 

t 
+ 

0 
Gi(t,7) II: EimnTmjk(7)R,e.(7)d' 

mn 

i 

t 
+ 

0 
'i (t,7) r FimnpRnj (')$k(')Rpe(7)d' 

mnP 

Third-Order Matrix Elements 

Space considerations do not permit the inclusion 
of the complete set of expressions for the third-order 
matrix elements for the transverse coordinates. There 
are 70 of them and the average expression has about 
twenty terms, most of which contain double integrals. 
It would also be next to impossible to transcribe the 
terms into this paper rithout error. A complete 
printing would be of questionable utility since the 
matrix eleme;;; ar;;i;db:d inLiznomputer programs 
TRANSPORT interested in 
evaluating the matrix elements would use one of these 
computer programs, rather than return to the original 
expression. As a sample, we include only one term. 
It is one of the most commomly encountered, being the 
second-order chromatic effect on the focusing of a 
system. The expression for !I1266 follows: 

U1266 = - 2(2n-/3) 
I 

GX(t,r)dx(r)dr (10) 

- (2-n) Gx(t,r)sx(r)dT + 3h 
i 

2( 
i 

Gx (t > -0 cx (7.1 sx (7) d-r 

- (4-3n)h3 
i 

Gx (t ,T) cx (7) sx (7) dx (7) d7 

- 3(7+2,!%n)h4 
i 

Gx (t ,7) sx (7) d; (7) d-r 

- ; (4-3n)h4 
i 

GxWbfW~ 

+ (2n-P)h4 
i 

Gx(t,r)cx(T) G;(7.,7')d;2(r')dr' 
i 

- (2n-p)h4 
i 

Gx(t,r)sx(r) 
i 

Gx(r,r')dr' 

+ (2n-e)(2-n)h5 i Gx(t>~bx(~) Gx(W)dxWW 
, / 

+ (2n-/?)(2-n)h5 
i 

Gx(t,r)dx(r) Gx(r,?)sx(r')dr' / 

+ (2n-8)(2-n)h5/Cx(t,r) /cx(7,7.)sx('~)dx(~~)dr' 

+ 2(2n-/?)h5 
i 

Gx(tsr)sx(r) G;(r,r')sx(r')dX(r')dr' 
f 

+ 2(2n-p)h5 
: 

Gx(Wdx(~) GX(7,7')cX(7')sX(7')d~' 
/ 

+ (2n-p)he Gx(t,r)sx(r) Gx(r,+)s;(+)d+ 
/ 

2(2n-p)))h6 
J 

Gx(t,r)sx(r) Gx(r,rl)d;(r')d? 
I 

4(2n-m2h6 
/ 

Gx(Wdx(~) GX(7,7')sX(7')dX(7')d7' 
/ 

h2 Gx(t,r)cx(r) 
I / ' 

G;(r,r')d? 

(2-n)h3 
I 

Gx(t,r)cx(r) 'Gi(r,r')dx(r')dr' 
/ 

(2-n)h4 Gx(t,r)sx(r) 
/ i 

Gi(r,r')sx(r')dr' 

(2-n)h4/Cx(t,+r)/Cx(r,r')cx(rJ)sx(7')d7' 

(2-n)2h4/Gx(t,+r)/Gx(r,T')sx(r'jdr' 

+ f h4 
/ 

Gx(t,r)cx(r) 
i 

G;(r,r')s;(r')dr' 

+ h4 G;(r,r')cx(r')sx(r')dr' 

The outer integrals are taken from 0 to t, the inner 
ones from 0 to 7. 
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