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ABSTRACT 

The mean square emittancc is useful for analyzing the be- 

havior of beams described by a twodimensional phase space 

(or of beams described by a higher dimensional phase space 

but for which the various degrees of freedom are uncoupled) 

because it remains invariant under beam transport through 

any optical system for which t,here are no nonlinear forces. Us- 

iug Lit algebraic properties of the symplectic group, we show 

t,hat in the general case of a six-dimensional phase space (in- 

cluding possible coupling between all degrees of freedom) the 

concept of mean square emittance can be generalized to pro- 

duce three invariants. These invariants (which can be viewed 

as cigenemittances) are made out of second order moments, 

and can be shown to form a complete set. They should be 

very useful in the analysis of general beam transport. Finally, 

the Lie algebraic methods can be extended to make infinitely 

many iuvariants out of cubic and higher order moments. 

I. INTRODUCTION 

The main purpose of this paper is to provide a Lie alge- 

braic treatment of moments of particle distributions and invari- 

ants constructed out of these moments. In Section II, moments 

are defined and their evolution under beam transport is deter- 

mined. In Section III, the concept of mean square emittancc 

is generalized to obtain quantities that remain invariant un 

der full six dimensional linear beam transport with couplings 

bet,ween the three degrees of freedom. Finally, a method to 

construct higher order invariants is given. 

II. BASIC CONCEPTS 

Let 2 = (“.Pz,Y,P,3 r.p,) be the six dimensional vector 

describing the location of a particle in phase space. Consider 

the action of a linear beam transport system on this particle. 

Its effect can be described by a linear transfer map M. Denot- 

ing the initial and final locations of the particle by zi and .~f 

respectively, we can write 

Zf = -142’. (2.1) 

If our beam transport system is Hamiltonian, M is a 6x6 sym- 

plectic matrix, and satisfies the equation’ 

hIJiM = J (2.2) 

where &4 is the transpose of M and 

Here I is the 3x3 identity matrix. 

In the following we derive the basic equation for trans- 

port of moments. Let h(z) be the initial distribution function 

describing particle density in phase space with coordinates z. 

Also, let Pa(z), where o is some running index, denote a com- 

plete set of homogeneous polynomials in Z. Then one can define 

a set of initial moments rui by the rule 

w; s J d6z h(i)P,(z). (2.4) 

Kow suppose t,he particle distribution 1!(z) is transported 

through the system described by the linear transfer map M. 

Then the final distribution at the end of the system is given 

by h(M-ia). Correspondingly, the final moments are given by 

the expressions 

wf, = J d’z h(M-‘z)P,(z). (2.5) 

After some mampulation using the symplectic property or 

M, we get 

w; = J 82 h(z’)P,(Mz’). (2.6) 

Also by completeness of P,(z) one has a relation of the form 

Pa(Mz) = D(M),fl P,(z). (2.7) 

Substituting this in Eq. (2.6) we finally get 

w; = D(A&/y w;. (2.8) 

This is the basic equation for moment transport. 

III. KINEMATIC MOMENT INVARIANTS 

A. DEFINITIONS 

We are now in a position to define moment invariants. 

Rewrite Eq. (2.8) as 

wf = D(M) w’. (3-l) 

Suppose a function I(w) has the following property 

I(D(M)w) = I(w) (3.2) 

for all 114. Then I is called a kinematic moment invariant. 
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ilnother important concept is that of moment equivalence 

classes. S~I~I~OSC there exists an M such that 

wb = D(M)w”. (3.3) 

Then we write 

wb - wa. (3.4) 

This relation is an equivalence relation. Let [w] be the set of 

all wb such that w* - wG. The set [w] is called the equivalence 

class of u1. 

This leads us to the observation that a kinematic moment 

invariant is a class function i.e. I(w”) = I(w”) if w* N wa. 

ThM 

I = I([w]). (3.5) 

From the above discussion, we conclude that the number of 

functionally independent kinematic moment invariants is equal 

to the dimensionality of the set of equivalence classes. 

B. QUADRATIC MOMENT INVARIANTS 

An example of a kinematic moment invariant is the famil- 

iar two dimensional mean square emitta.nce defined as 

E2 =< x2 ><p; > -(< xp, >)2. (3.6) 

Using Eq. (2.8) it can be shown that mean square emittance 

remains invariant under two dimensional linear beam trans- 

port. One of our goals is to generalize this to obtain quantities 

that remain invariant under full six dimensional linear beam 

transport with collplings between the I, y, r degrees of frre- 

dom. 

For the present. let us restrict our attention to quadratic 

moments. Given any set of quadratic moments w, we can find’ 

an equivalent set PO* (i.e. w - w*) such that the moments w* 

have t,he following special properties 

< Z,Zb > *=0 if a#h. (3.7) 

< xx >* =< p,p, >*: (3.&z) 

* 
< YY >* =< PyPy > 1 (3.8b) 

< TT >’ =< p,p, >* (3.8~) 

This shows that there are three equivalence classes of quadratic 

moments and hence three functionally independent kinematic 

invariants made from quadratic moments. 

We can takp the three independent invariants to be the 

eigen mean square emittances e2,, E:, and C: defined as follows: 

E; =< xx >I< p,p, >I, 

2 

(3.9a) 

Ey =-z YY >*< PyPy >*, (3.9b) 
2 E, =< TT >*< p,p, >* . (3.9c) 

Then any kinematic invariant made of quadratic moments can 

be writ,tcn in the form 

12 = I*(E;, c;, E; > (3.10) 

Another choice is to take the functions 1i”‘[w], Il”‘[w], 

and Ii”‘[w] defined by the relations 

r;2’[w] = E; + E2y + EZ,, (3.11a) 

12’4’[w] = 54 + e4 + e4,, 2 Y (3.11b) 

$yw] = e; + c; + c”,. (3.11c) 

An alternative method for obtaining these invariants is 

outlined below. The advantage of this method is that it can be 

easily generalized to construct invariants made of higher order 

moments. Let 

1 
I.j”‘[w] = -(-l)Ptr(ZJ)” 

2 
(3.12) 

where 2 is a 6 x 6 symmetric matrix whose elements are defined 

as 

z,b =< z,Zb > (3.13) 

and J is the fundamental symplectic matrix defined in Eq. 

(2.3). It can be shown that I$“‘[w] is invariant under linear 

beam transport. Further, I~“‘[w] for n = 2, 4 and 6 correspond 

to the three independent invariants listed in EJq, (3.11). In 

particular, one finds the result3 

I;“‘[w] =< x2 >< p; > - < xp, >* + < y2 >< p; > 

- < yp, >2 + < T2 >< p2, > - < rp, >2 

+ 2 < xy >< p,py > -2 < xpy >< ypz > 

+ 2 < XT >< p,p, > -2 < xp, >< rp, > 

+ 2 < y7 >< p,p, > -2 < yp, >< Tp, x(3.14) 

The expressions for 1:“’ and 1i6) in six dimensional phase space 

are not listed since they are very long. 

C. HIGHER ORDER MOMENT INVARIANTS 

We now generalize the above concepts to construct in- 

variants made of higher order moments. For simplicity, we 

deal only with invariants made of cubic and quartic moments. 

Generalizations t,o moments of arbitrary order can be found 

elsewhere2. 

Let 

I.j”“‘[w] = tr[(Z(3)JZ(3)JJ)n], (3.15) 

1j”‘[w] = tr[(Z(4)JJ)n] (3.16) 

where 2c3) and Zc4f are third and fourth rank tensors whose 

elements are cubic and quartic moments respectively: 

zc3) =< Z,ZbZ, >, (3.17) 

z(“) =< ~,zb~,~,j > (3.18) 
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It can be shown that 1s and 14 are kinematic moment, 

invariants. In two dimensional phase space, we find the func- 

t,ionally independent cubic and quartic moment, invariants t,o 

be as follows (with the leading coefficient normalized to be 

equal to +l): 

r;“‘[w] =< x3 >*< p”, >* -3 < x*pt >*< xp’, >* 

+ 4 < x3 >< xp2, >3 $4 < x*p, >3< p; > 

- 6 < x3 >< x2pz >< xp”, >< p”, >, (3.19) 

r;*)(u)] =< x4 >< p”, > +3 < x2p2, >2 

- 4 < x3px >< xp; >, (3.20) 

Ij”)[lLi] =< x4 >< p”, >< .z*p2, > - < x4 >< xp”, >* 

- < x*p2, >3 - < x3pz >*< p”, > 

+ 2 < x3p, >< xp”, >< x*p2, > (3.21) 

Invariants can also be constructed using moments of dif- 

ferent orders. .4 simple example of such a mixed invariant 

comlmling linear and quadratic moments is given below: 

I~y[*o] = <x2 >< p, D2 -2 < xp, >< 2 >< p, > 

+<p;><x>*. (3.22) 

Such mixed moment invariants become important when the 

beam transport system contains misaligned optical elements 

and other “zeroth” order effects. When a particle distribution 

is transported through such a system, none of the I,$‘)[ru]‘s 

given above remain invariant. Instead it is combinations like 

I~“[~~] + li(~;“[r~] that remain invariant. Such combinations 

always involve a mixed “invariant,“. 
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