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Exploratory Orbit Analysis

LEOQO MICHELOTTI
Fermilab®, P.O.Box 500, Batavia, IL 60510

1 don’t think anybody could be better acquainted with the
thickness of his own head than myself. ... I do, notwithstand-
ing, feel as if [ could ezpress my feelings in a most remarkable
manner, if -~ if — I could only getl a start.

— Charles Dickens
Dombey and Son

Unlike the other documents in these proceedings, this paper is neither a
scientific nor a technical report. It is, rather, a short personal essay which
attempts to describe an Exploratory Orbit Analysis (EOA) environment -
a thing which does not exist, which could exist, which probably should exist,
but which never will exist without a sustained, coherent effort combining
the skills of many people over many years and without the prerequisite un-
derstanding that time and money spent on developing tools is invested, not
squandered.

Let us begin with the observation that creating specialized computing
envitonments to address specific classes of problems is hardly a new idea:
CAD systems are basically nothing more than this; in the medical profession,
environments now exist in which doctors can quickly and easily explore data
from PET, CAT, or NMR scans in a variety of ways, such as enhancing
structures of interest, slicing images along arbitrary planes, or highlighting
diseased tissue; and, of course, the graphics-driven, analysis environment
attached to the detectors of modern high energy physics experiments is an
example familiar to us all. The important point is this: no one expects an
engineer 1o be an expert on how the procedures of his {or her) CAD system
actually operate, a doctor to understand Radon transforms, or every high
energy physicist who uses CDF to provide his own graphics and statistical
packages. We expect these people to be experts in their own specizlties, and
we expect others to provide the appropriate “environment” in which they
can carry out tasks specific to those specialties quickly and efficiently.

In contrast to this, accelerator physicists need to understand Hamilton-
Jacobi theory, Lie groups, Fokker-Planck equations, computer science, Lya-
punov stability theory, global resonance analysis, and a host of other things
in order to proceed, individually and piecemeal, with their calculations. The
activity of developing reusable toolkits, by which the expertise of one person
can be shared by another, is still not given enough emphasis relative to that
of quickly writing non-reusable programs for doing individual calculations
of a (perceived) high priority. Tool development is too often considered a
secondary activity, to be done on the side while tackling the “real” problems.

Analyzing the behavior of a four or siz dimensional nonlineer dynamical
systemn is af least as difficull as analyzing events in high-energy collisions; the
consequences of doing it badly, or slowly, would be at least as devastating;
and yel the level of effort and ecrpendilure invested in the latter, the very
atlention paid to it by physicists at large, must be two orders of magnitude
greater than that given o the former.

It is difficult to choose the model which best explains the behavior of a
physical device if onc does not first understand the behavior of the available
models. The time is ripe for the development of a functioning EOA environ-
ment, which { will unsuccessfully try to describe below, to help us achieve
this goal.

Before beginning, let me apologize for not spending enough time learning
the accomplishments of others in this area sufficiently to comment on them
here. 1 hope to learn much during the course of this Conference, and a more
serious paper is planned for the future. In the meantime let me cite the work
of Schachinger, Talman, and their coworkers in building a unified schema for
doing simulations, performing operations, and analyzing data on the SSC
(18] and, of course, the continuing accomplishments of Keil, [selin, and com-
panv in expanding, upgrading, and maintaining MAD [6,8]. Perhaps what |
am trying to do is already contained in the work of these people, or others,
but on the chance that there yet remain one or two complementary points
to be made, let us continue with the essay.

Exploratory Data Analysis  As a starting point for designing an EOA
environment we might look at what already has been accomplished in the
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field of statistics. Exploratory Data Analysis (EDA) is, by now, a well-
established field which comprises a collection of tools for manipulating multi-
variate data with the purpose of revealing their structure. It should be
obvious that choosing a good way to organize and display a body of data
can be enormously helpful in mining its information content and, conversely,
that choosing a bad one can either bury it further or, even worse, mislead
one to the wrong conclusions.! EDA provides a battery of tools to aid in
ihe pursuit of this goal (that is, mining the information content, and all
that). It usuaily proceeds under the assumption that the analyst knows
nothing about the data’s underlying “dynamics.” Exploration accordingly
progresses in a model independent manner by employing clustering, polyno-
mial regression, curve fitting, histogramming, analysis of variance, two-way
correlation tests, transformations, and various other general purpose, statis-
tical techniques.[24,4,7] The analyst is not expected to understand how these
tools work; they are available for his rapid and efficient use. Structural clues
revealed by these manipulations can then influence the development of mod-
els in the “confirmatory” (as opposed to “exploratory™) stage of the analysis.

In a similar way, we need an envitonment in which accelerator physicists
who want to explore the behavior of particle orbits can gquickly and easily
employ a variety of tools from perturbation theory, Lyapunov stability anal-
ysis, or whatever without becoming experts on them. An Exploratory Orbit
Analysis (EOA) envitonment can be designed in analogy to EDA environ-
ments so that physicists can explore dynamics, form hypotheses, and test
them.

Language A programming language is more than the medium for com-

municating instructions to a machine; it is also a medium in which people
formulate solutions to problems. A good langunage will aid the performance
of both tasks, not just the first. “Ideally one approaches the task of designing
a program in three stages: first gain a clear understanding of the problem,
then identify the key concepts involved in a solution, and finally express that
solution in a program. However, [in reality] the details of the problem and
concepts of the solution often beome clearly understood only through the ef-
fort to express them in the program - this is where the choice of programming
language matters.”[22] Those who design EDA environments have advocated
using an interpreted shell language, such as LISP or S, rather than compiled
languages, like Pascal and C.[12] Programs in an EDA environment are fluid;
people {requently make small changes on a daily basis, as they try various
ways of looking at data. The principal advantage of interpreted languages is
their ability to respond instantaneously to these changes without leaving the
environment — compilation is an obtrusive activity, and it takes time. This
argument is compelling, but a successful toolkit must attract its potential
community of users, and it seems unlikely that many accelerator physicists
will ever program in LISP: LISP’s source code is not transparent, and most
people not in the artificial intelligence business are not attracted to it. My
current preference is to work in C++ .[22,13] I anticipate that opposition
to this powerful and easy language may be milder, and anyone who invests
the four or five days necessary to learn it will (almost surely) never program
in FORTRAN again. C++ was built upon € by adding many of the fea-
tures which make Ada so useful: “class” structures permit the creation of
legitimate new variable types which then act like part of the language itself;
classes permit data hiding and inheritance, leading to easy and natural im-
plementations of object-oriented programming; dynamic memory allocation
is trivial; and C++ links easily with standard libraries, such as IMSL, so no
one need fear losing access to useful software.

Object-oriented programming is a new methodology which changes the
very approach to programming. Rather than immediately asking, “How
do I write the program?” one first steps back and asks, “What objects are
most convenient for expressing the problem and obtaining a solution?” Itisa
difficult concept to describe to someone who has not tried it. As a metaphor,
consider sitting behind the wheel of a new car. What you interact with are
fairly standard objects: an ignition switch, a steering wheel, an accelerator
pedal, and so forth. The implementation of those objects and the hardware
to which they are connected may vary between cars, but their functions are

TFor those to whom it is not obvious, I recommend reading Tufte’s beau-
tiful masterpiece.{23]
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familiar and independent of the implementation. You thus know what needs
to be done in order to start the car and get it moving; regardless of the make
or model, there is no need to refer to complicated manuals to perform these
simple tasks.

Object-oriented programming tries to do that with computers as well,
the most successful application being the Macintosh interface built upon
Xerox PARC’s Smalltalk. In our own world, consider, for example, that a
tuneDiagram may be a useful object to use in a variety of programs, Its prin-
cipal function would be the selection of a working point by placing a cursor
in the appropriate location in the diagram. Having said that much, I have
almost completely specified everything that an applications program needs
to know about the object; its implementation is then a logically independent
task which can be carried out in a number of possibly machine-dependent
ways. (The applications program itself stays machine independent; all the
machine dependence gets buried in the implementation of objects.)

There is room for debate on the relative merits of interpretive languages,
like LISP, and compiled languages, like C++ | but what seems beyond doubt
is that FORTRAN, whose principal advantage is its long history, is not the
language of choice for developing an EOA environment. (This proposition is
either completely obvious, or its justification is too lengthy to include here.)

Graphics  Onc of the aphorisms attributed to the late Richard Feynman,
but probably of multiple informal authorship, in various forms, observes
that, (paraphrased) If you want to understand an electron, it helps to look
at it. It also has been noted by many that advances in science have fol-
lowed the development of new tools: better instrumentation Jeads to new
observations, which in turn lead to new understanding, which provides new
questions for further experiments, and so forth. Both of these statements
can be expected to hold true for the study of nonlinear dynamical systems as
well. The use of computer graphics to discover the phenomenon of “strange
attractors” in dissipative systems and to learn the approach to chaos in one
degree-of-freedom Hamiltonian systems is well known. We must push this
technology to the limit in order to explore the behavior of multi-dimensional
Hamiltonian systems.

The purpose of graphics in an EOA environment is not to draw pictures;
the purpose of graphics is to act as the inferface between a human being
and information buried in a computer. Accordingly, graphics hardware and
EOA requires creating and naming
graphics ebjects, object instancing, hierarchical ordering, and easy connec-

software are no small considerations.

tivity between graphics objects and peripheral devices. Because of this need
to create, edit, and interact with objects in the graphics world, EOA graph-
ics software should be based on Phigs-like protocols rather than ACM Core
or GKS, despite the fact that Phigs is not yet a standard.

At Fermilab we offload FEOA graphics tasks onto an Evans and Suther-
land PS390 terminal, connected via Ethernet to a VAX {VMS) cluster; this
arrangement will soon be enhanced by establishing communication with a
SUN (Unix) workstation. (This is not necessarily the best possible system,
but it works tolerably well, and the PS390 interfaced easily with our VAX.
Computer hardware is changing so rapidly that devices can become obso-
lete while purchase requisitions go through the process of being approved.
Any list of competitive alternatives would include the fully integrated Silicon
Graphics IRIS workstation and the new Ardent super-computer.) Peripheral
devices inciude a data tablet and a dialbox. The ratural use of the latter is
ir performing viewing transformations of displayed data
lation, scaling, and the like.
node in the hierarchy that accepts numeric input. They therefore can be

- rotation, trans-
However, the dials can be connected to any

used to perform a large variety of other tasks, such as: (a) a dial can act
like a “gain” knob on an oscilloscope by preferentially scaling data in one
direction without affecting other graphics ohjects; (b) by connecting a dial
to a decision node in the graphics hierarchy, and instancing a set of orbits
nnder this node, 1t 1s possible to “flip” through the orbits, enabling a crude
form of animation; (c¢) dial readings can be sent back to the host computer
and connected to variables in a program. Most importantly, the dials can be
connected and disconnected dynamically so that their function at any given
moement depends on what the user wants to do.

AESOP AESOP (Analysis and Exploration of Simulated Orbits in Phas-
espace) is our first attempt to create a prototype EQA graphics interface
at Fermilab. It was written as a shell which a “user” can link to any four-
dimensional mapping of his choice. A deliberate effort was made to separate
the graphics functions from the physics so that others would find the shell
easy to use. It has been moderately successful at this: I have been us-
ing it to explore the offset beam-beam interaction while others at Fermilab
have linked AESOP to TEAPOT, TEVLAT, or their own mapping routines.

Figure 1: Separatrix of a 21, — 2u, resonance and island orbits.

[17,21,11] A typical AESOT screen, showing the separatrix and two island
orbits of the 21, — 2uvy resonance generated by the beam-beam interaction, is
displayed in Figure 1. The top two viewporis contain two-dimensional pro-
jections of four-dimensional transverse phase space: the upper left (right)
shows the orbit projected along normalized horizontal (vertical} Cartesian
coordinates. The three-dimensional projections in the lower viewports are
“angle-angle-action™ or &8/ plots, as defined in references [14, p.278] ard
[17); this type of display has also been advocated by Ruth, et al. [20] and
has been used by others as well. (As an upgrade, I plan to diagonalize the
auto-covariance matrix of the action variables in order to suggest the best
lirear combinations for display. This should be especially useful near a dom-
inant resonance, where the eigenvalue along the resonance direction will be
small.) The interactive part of AESOP allows the user to select “initial”
conditions for the orbit by using the data tablet to pick their locations in
the top two viewports; an upgraded version will enable the use of the bottom
two viewports by using a four-dimensional cursor connected to the dialbox.
AESOP allows the user to change the control parameters of his mapping —
tune, beambearn tune shift, multipole strengths, or whatever — so that he
can quickly explore orbit variations following a change in control parameters.
If the analyst finds orbits that are noteworthy, they can be stored in a file,
called a “fable.”? The fables are, if you will, entries in an electronic loghook.
They can be edited and suitable comment added so that anyone can read
them back and understand their significance.

Shcing and dicing A capability for doing easy things easily will be an
indispensable attribute of a functioning EOA environment. Accordingly, an
interpreter for performing operations similar to database filters will be an
essential component. For example, it is frequently useful to choose parts
of an orbit where some criterion is satisfied, such as when one wants to
correlate some statistic, like eigenvalues of the single-turn Jacobian, with a
phase space structure, like a separatrix. AESOP then would have to inter-
pret command sequences like, “Select all points on this (chosen with
a cursor) orbit with #p/p > 0.001. Display them in a 66/ plot in
viewport 6. Color red all those with at least one eigenvalue
of the single-turn Jacobian off the unit circle.” One then could
quickly test hypotheses and guesses, such as whether large eigenvalues cor-
relate with passage through a resonance separatrix which happens to move
into the vicinity of an orbit when 8p/p is large. Slicing and dicing data in
this way is the sort of operation that database programs do well, and it will
be necessary to include similar kinds of command interpreters in the EOA
environment. A capability for offloading such calculations in a multi-tasking
environment, would also be useful. The analyst could then perform other
operations rather than remain idle while waiting for results to emerge.

Perturbation theory It is said that all reasoning is based on metaphor.
Perturbation theory seeks to establish connections between systems which
are not yet understood and those that are, in the hope of transferring this

understanding from the latter to the former. Although there is no unique,

2Get it? AESOP’s fables ... get it?? Rather than dwell on the negative
connotation of a fable as a story of questionable veracity, I prefer to think
of it as one which is designed to teach a lesson.
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best way of doing this, most of the promising methods which have been
studied in the last few years seek to construct a set of “normal form” vari-
ables in which to express the Hamiltonian.[1,25,14,15] One feature which
all approaches have in common is the attempt made by their adhereats to
automate them as much as possible, the most developed of these probably
being the MARYLIE code of Dragt and his students [1] and the DA soft-
ware package of Berz (2. Like Dragt. I (once) prefer(red) to automate a Lie
algebraic series, but many others work with canonical transformalions ala
generating functions.®> With full automation, there is no reason why access
to any perturbative calculation should be reserved to experts. A functioning
EOA environment would contain a battery of these procedures — enabling,
for example, the calculation and display of distorted KAM tori, amplitude
dependence of tunes, or distorted resonance separatrices for comparison with
tracking -~ with a user-interface so friendly that they become trivial to call
up and use. For comparison to non-integrable perturbative models, such as
a Hamiltonian with two resonance terms, we would need for a symplectic
numerical integrator.{3,9]

Separatrix search We who labot in the vineyard of Hamiltonian dy-
namics are at a disadvantage compared to our colleagues who work with
dissipative systems. The phase space of a Hamiltonian system is a sym-
plectic manifold. The practical consequence of this is almost overwhelming:
whereas our dissipative friends can start anywhere in their phase spaces and
are almost guaranteed to converge onto interesting structures, such as attrac-
tors, we must painstakingly hunt through ours for the important structures,
which typically are separatrices or stability boundaries. Finding separatrices
is the fundamental computational problem in studying the dynamics of pe-
riodic Hamiltonian systems. It is relatively easy to solve in two dimensions
{one degree of freedom): resonant orbits, stable or unstable, are periodic and
generally can be found by employing Newton’s method on the appropriate
iterate of the period-advance map. The separatrix is then constructed by {a)
linearizing the map about an unstable resonant orbit, (b) finding the eigen-
vectors of the linearized map, to get the directions of the stable and unstable
manifolds, and (c) iterating the map, beginning from a small displacement
along the unstable manifold. However, higher dimensional systems are more
difficult: resonant orbits are generally not periodic, so Newton’s method is
applicable only in special cases, and, even when integrable, separatrices are
themselves complicated, multi-dimensional objects, difficult to visualize and
to describe.[16] Having an analytic approximation to their locations helps,
and perturbation theoretic tools, such as the techniques based on Hamilton-
Jacobi theory [25], may be useful here. In the absence of such an approxima-
tion, we must fall back on a graphics-oriented, brute force search. This is not
good enough: Think of Newton’s method as the replacement of a symplectic
map with a dissipative map in such a way that a fixed point of the former is
an attractor of the latter. Might there not be an appropriate generalization
when we seek not a fixed point but a resonant orbit?

Measuring chaos An EOA environment should contain a set of tools for
detecting and quantifying chaos, especially if one wants to explore systemati-
cally the characteristics of alarge number of orbits (assembly line EOA). One
obvious candidate is the computation of Lyapunov exponents.[10,5] Here is
another calculation which could be done as a sub-process, as the number of
turns required to evaluate these numbers can be large; the analyst may pre-
fer to continue performing other tasks while the progress of this calculation

is displayed in a strip chart on his screen.

More detailed “proximity analysis” might examine the turn-by-turn be-
havior of the eigenvalues of the Jacobian, as is done in reference [5]. Chaos
is associated with noisy spectral transforms as well, and these should not be
neglected as a possible diagnostics. Minimal spanning tree clustering may be
able to estimate geometric characteristics of an orbit, such as its regularity,
fairly quickly.

Although rambling, this listing is not exhaustive. There are obvious things
which can be done immediately, and if a full EOA environment is successfully
to come into being, it will have to prove useful in its early and intermediate
stages. Indeed, experience gained by users during the early stages will be
invaluable in shaping the direction of future development. However, com-
pleting the job, will clearly require a serious, long term commitment in a
supportive atmosphere (relatively) free from crises.

30n the other hand, unlike Dragt or Berz, my efforts have had all the
dramatic impact of a gnat landing on the shoulders of a hairy water buffalo.
as was succinctly summarized in reference [19].
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