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Abstract

Robinson’s stability conditions are rederived by using
Sacherer’s integral equation. The relation between the max-
imum stable beam current and the cavity detuning is repro-
duced with a correction to account for the equilibrium phase-
space distribution of beam particles. The coupling between the
longitudinal dipole and gquadrupole modes is also studied. It
is found that the coupling modifies Robinson’s stability condi-
tions significantly in the small cavity detuning region.

Introduction

More than thirty years ago, IX. W. Robinson derived the
stability conditions for a beam-cavity interaction system in a
synchrotron or a storage ring.! For machines operated below
transition (v < v,), these stahility conditions are
0 < sin (2¢,)

(1)

and
Vincos,

Rsin (29,) @

where ¢, = tan"'[2Q(wr — wrrp)/wy] is the radio-frequency
(RF) detuning angle, @ is the quality factor of the cavity, wp
is the resonant frequency of the cavity, wpp is the frequency of
the applied RF power, I is the averaged beam current, V,, is
the maximum voltage on the cavity, , is the synchronous angle
between the beam current and the voltage of the cavity, and
R is the shunt resistance of the cavity. For machines operated
above transition (v > %), the relational sign in Inequality (1)
needs to be reversed.

After Robinson’s work on the stability of a beam-cavity
system, the same or similar problems were examined by using
different approaches and formalisms other than the equivalent
circuit model originally used by Robinson, including the use of
the more elaborate formalism of the Vlasov equation.?:® One
of the advantages of using the Vlasov equation over the equiv-
alent circuit model is that higher synchrotron sidebands (or
harmonics) are included in the formalism in a natural way.
The mode originally examined by Robinson was identified as
the dipole mode in Sacherer’s formalism of the bunched-beam
longitudinal instability. The next sidebands correspond to the
quadrupole mode perturbation in the phase space of the bean
particles’ distribution. For narrow-band resonators, only the
first few synchrotron sidebands are important.

Among the publications using the Vlasov equation, only
Inequality (1) has been reproduced, while an explicit rederiva-
tion of Inequality (2) by this technique still has not been seen
in the literature. Recently, the consistency between the use of
the equivalent circuit model and the use of Sacherer’s integral
equation for examining the stability of the beam-cavity system
has been questioned.* The purpose of this paper is twofold.
First, we will rederive Robinson’s stability limits, including In-
equality (2), by using Sacherer’s integral equation. Second, we
will apply the same technique to examine the coupling effect
between the dipole and quadrupole modes. For simplicity, only
the case of v < v, will be considered because the v > +, case
can be treated by the same procedure.

Robinson’s Stability Criteria

Consider the case of M equally spaced particle bunches
circulating with angular revolution frequency €, in a circular

* Work supported by Los Alamos National Laboratory Program Devel-
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accelerator or a storage ring. We choose a coordinate system
such that the z-axis is along the direction of particle propa-
gation. For the purpose of our discussion, we can neglect the
repulsive Coulomb force between particles in the equilibrium
state, and we assume that the RF focusing force can be ap-
proximated by a linear function, —w?z, where the synchrotron
frequency w, is defined according to

2 fIUth €Os z;bs (3)
8 —_— e e "
i 2rm,yR2

where g and m, are the charge and the rest mass of a beam
particle, respectively; h is the RF harmonic number; R is the
effective machine radius; and n = (1/42) — (1/4%). We also
assume that all bunches have the same equilibrium particle
distribution described by a distribution function folz,v.)inthe
phase space, where = and v, are the distance and the relative
velocity with respect to the reference particle at the bunch
center. Neglecting the relative motion among bunches, the
following Sacherer’s integral cquation for the coherent modes
of longitudinal perturbations can be derived from the linearized
Vlasov equation:?
24 |
(@ = Lo Ri(r) = @ MnQ,l ((_if_o)z Z p(w = nQO)i"'fl‘l

2rmeyr \ dr n

n,m

t

X J[(%:;:)Alme(T")Jm (n;];-)v"d:" ,
1)

where 7 = /2% + (v, /w,)? is the amplitude of the synchrotron

oscillation of a beam particle, w is the frequency to be solved, !
and m are integers designating the azimuthal harmonics of the
perturbation in the phase space of an individual bunch, Ry(7) is
the Fourier content of the /th harmonic of the perturbation in
the phase space, n is the azimuthal harmonic number around
the ring, Z,(w + n€,) is the longitudinal impedance at the
frequency w+n,, and Ji(z) is the kth order Bessel function of
the first kind with argument . In arriving at Eq. (4) we have
assumed that the equilibrium distribution function depends on
r only, and we have neglected the time-of-flight effect.’

For a narrow-band resonator impedance, we need only to
consider those modes with frequencies very close to the reso-
nant frequency of the cavity. Thus, we need only to consider
the cases of n = £h, | = &1, and m = %1 in Eq. (4). One
therefore derives the following two equations:

(w—w )Ry (r) = — 3‘1(@(2).11 (ﬂ)zz(w)(rl —T_) . (5)

o\ dr R
and
LA (df, hr
(ww ) Roa(r) = —%—((lfr)J_l(E)zw)(n—F_n ., (6)

where 4 = ¢2MnQ,/(27hmyy),

Z(w) = Zpn(w+ &) — Z_p(w ~ h2,) (7)

/OOOR,n(T)Jm (%)rdr (8)

Multiplying both sides of Egs. (5) and (6) by rJ;(%r/R) and
integrating over r, we obtain two linear equations of T'; and
T'_,. For nontrivial solutions of I'; and I'_;, the determinant
of the coefficients of these quantities must be equal to zero. We
therefore have following dispersion relation:

and
r, =

82+ w? 29w, Z(s) =0 (9)
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where

Dom :A/OOO[J,,I(%)]ZC:{—: o (10)

In obtaining Eq. (9), we have made a change of variable of
s = —iw in order to make it easy to apply Routh’s eriterion®
for investigating the roots of Eq. (9). If the real parts of all the
roots are equal to or less than zero, then the system is stable;
otherwise there is an instability.

For a narrow-band resonator impedance, we can use the
following approximations:

Zih(wihﬂo)zR/(l+iiitanéy) . (1)
o

where & = wp/(2Q). Substituting the above impedances into
Eq. (9), yields

s' + 208 + (w? + a’sec? ¢,)s8”

IR
+ 2aw?s 4 a?w? (sec2 by — I—M) =0,

Vi cosidy
(12)

where the reduced form factor Fy, is defined as

Fue S [T @] o} [ o]

O 4 s v G

(13)
The conditions for stability, by Routh’s criterion®, are
, 2V cos i,
sin (2¢y) < ————e—- 14
(20) < 22 (14)
and
tang, >0 . (15)

We note that, except for the factors 2/ Fy, Eq. (12) is the same
as the dispersion relation obtained from the equivalent circuit
formalism, and the stability conditions derived here are the
same as the stability conditions in Inequalities (1) and (2).

Dipoie-Quadrupole Mode Coupling

If the guadrupole modes are included, we need to consider
the cases of n = +h, I = +1, [ = £2,m = 1, and m = +2.
Using the similar procedure in deriving Eq. (12), we obtain
the dispersion relation

6

$% 4+ 20 6% + (Bw? + a%sec? ¢,) st + L0aw? §°

+wt +5w2a?sec? ¢, — ARw, (Y, + 40,) tan ¢, ]s? +80sz

+aa?w?w? sec? oy+10R 0y — ARw (P + J2)tan ¢,] =

(16)
The conditions for stability, by Routh’s criterion, are
16RY -
tan ¢, > :, (17)
3w,

and

(tan 6y — 47wl> (tan by — 4R02> +1>0 . (18)
W W

Combining Inequalities (17) and (18), we can derive the fol-
lowing stability conditions:
(1] If sind, < [2v/€/(1 +€)], where £ is defined in Eq. (22

below, then

3tan ¢, V,, cos

I
< AFR

=I,T , (19)

where

2V cos 1),

= FRsin 24,)

(20)

is the maximum stable current for the dipole mode when there
is no coupling with the quadrupole mode,

2
T 3sin” ¢, 7 (21)
4¢
and
= % . (22)

2] For [2VE/(1 + &)]

two subcases:

(a)for 1/2< ¢

<singy, < [44/E/(3 + 12¢))], there are

I<1,T , (23)

(b) for £ < 1/2, there are two stable regions:
I<nr_ (24)
and ¢ (24)
LT, <I<I,T 25
where ¢y <<l (25)

Ty =sin® gy [1+ € £ V(1 - 9?2 — 4 cot? 6y /(28) - (26)
3] If [44/£/(3 + 12€)] < sin ¢y, then

I<IT. . (27)

The condition described in Inequality (27) corresponds to
the limit of the beam current in the majority of practical cases.
It can be shown easily that when £ cot? ¢, is very small, the
conditions in Inequality (27) reduce to Robinson's stability con-
ditions.

T . [ o) L 1 T [
Numerical esults and 171scussions

The reduced form factor Fy and the parameter £ are plot-
ted in Fig. 1 and Fig. 2, respectively, as functions of g =
{(hL/2R) for some equilibrium distribution functions. As we
can see in Fig. 1, the values of the reduced form factor Fy
for different distribution functions all converge to the value of
two when the value of g or the bunch length approaches zero.
As the bunch length increases, the valuc of Fy goes down for
all distribution functions, and the scparations between curves
tend to increase. T]l(‘l(‘ff)r(’ for lt)ng bunches, the maximum
stable current is actually h]ghm than that given in Inequality
(2). The plot in Fig. 2 indicates that except for long bunches,
the value of € is usually much smaller than one, and the xdluo»
of the £ for different equilibrium functions all converge to zero
when ¢ goes to zero.

The quantities T_, T, and T represent the ratios be-
tween the maximum stable beam current with quadrupole-
dipole mode coupling and the maximum stable beam current
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Fig. 1. The reduced form factor Fy as a function of the parameter g for
the distribution functions.
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Fiz. 2. The quantity £ as a function of ¢ for different distribution

functions.

(lipolL mode coupling and the maximum stable beam current
for dipole mode perturbation only. We note that only T can
have valucs less than one, and this happens only when 3 sin?
9, < 4£. We also note that the maximum values of Ty and T
ean be as large as four. Thus, if the region of 3 sin’ ¢y < AL
can be avoided, then the maximun stable current actually can
be higher than that predicted by Robinson’s criteria.

The numerical values of T, Ty, and T are shown in Figs. 3
to 5 as functions of € for various values of the detuning angle
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Fig. 3. The current ratio T as a function of £ for various values of the

detuning angle ¢, Thick curves correspond to the extreme values of T_.
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Fig. 4. The current ratio T as a function of £ for various values of the
o + >

detuning angle (f)y. Thick curves correspond to the extreme values of 77
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Fig. 5. The current ratio T as a function of £ for various values of the
detuning angle ¢y Thick curves correspond to the extreme values of T'.

éy. As can be scen in the figures, the highest stable currents
are always in the regions of small € and small cavity detuning.
We remind the madu: that cavity detuning is necessary be-
cause finite RF power is used for acceleration or bunching, and
because the required phase between the total voltage of the
cavity and thie beam cwrrent is maintained by compensating
the beam loading with the RF power. Thus, in most situa-
tions, small cavity <1('t11111111j implies higher cavity voltage, and
the power consumption is lng,her than mmun.nl} required.

Conclusion

Ve have rederived Robinson’s stability criteria by using
the Vlasov equation. The results derived from the Vlasov equa-
tion also include the form factor correction for different equi-
librium distributions in the phase space. We have also studied
the coupling between the dipole and quadrupole modes with
a resonator impedance. It is shown that for small cavity de-
tuning, the maximal stable beam current can bc higher than
Robinson’s limit without coupling. When 3 sin® Gy < 4E, the
threshold current is lower than Robinson’s limit and the thresh-
old current drops to zero like tang, /£,
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