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Abstract 

Robinson’s stability conditions are reclcrivetl by using 
S:~chcr.er’s integral eq1mtion. Thr relation betwccrl the mnx- 
iiii1un 5taldc brain current and the ca\Gty dctuning is r~‘prcl- 
tlllc3:tl with a correction to accolint for the eqllilibrium l)hnsc- 
space distribution of beam l>itrtiClcS. The coupling between the 
longitu~linnl rtipolc and q~~ntlrupolc modes is also stutlicd. It, 
is found that the conpling modifies Robinson’s stat)ility condi- 
tions significantly in the small cavity tlctuning region. 

Introduction 

hIorc than thirty ycnrs ago, I<. ‘iv. Robinson derived the 
stai)ility conditions for a beans-cavity inkraction system in it 
synchrotron or a storage ring. ’ For machines operated below 
transition (7 < I,), these stal>ility conditions are 

tilld 
0 < sin (24,) ! (1) 

(2) I< 
v,,, cos $8 

Rsin (24,) ’ 

where 4, = tan -‘[ZQ(wn - w~F.)/w~(] is the radio-frequency 
(RF) detuning angle, Q is the quality factor of the cavity, wn 
is the resonant frcquencq- of the cavity, ions is the frequency of 
the applied RF power, I is the averaged beam current, I,‘,, is 
thr maximum voltage on t,hc cavity, 7$3 is the synchronous angle 
between the beam current and the voltage of the cavity, and 
?Z is the shunt, resistance of the cavity. For machines operated 
above transition (y > yt), the rrlational sign in Inrquality (1) 
needs to be reversed. 

After Robinson’s work on the stability of a beam-cavity 
system, the same or similar problems were examined by using 
different approaches and formalisms other than the equivalent 
circuit modc,l originally used by Robinson, including the use of 
the, more elaborate formalism of the Vlasov equation.2~” One 
of thr advantages of using the \:lasov equation over the equiv- 
alent circuit model is that higher synchrotron sidebands (or 
harmonics) arc includrd in the formalism in a natural way. 
The lnotle originally esamincd by Robinson was identified as 
tlica dipole mode in Sacherer’s formalism of the bunched-beam 
loqitutlinal inst,ability. The next sidebands correspond to tllc 
quadrupolc mode p~~rturbation in the phase space of the bralu 
pzhrticles distribution. For narrowband resonators, only tllc, 
first few syucllrotron sidelxultls are import,ant,. 

Among the publications using the Vlasov equation, only 
Inequality ( 1) has been reproduced, while an explicit rederiv;t- 
tion of Inequality (2) by this technique still has not been seen 
in the literature. Recently, the consistency between the use of 
thr equivalent circuit model and the use of Sacherer’s integral 
rqlmtion for examining the stability of the beam-cavity system 
has ken questioned.4 The purpose of this paper is twofold. 
First, we will redcrive Robinson’s stability limits, including In- 
c~qualit,y (2); by using Sacherer’s integral equation. Second, we 
will apply the same technique to examine the coupling effect 
between the dipole and quadrupole modes. For simplicity, only 
t,hr case of y < y, will be considered because the y > “it case 
can be treated by the same procedure. 

Robiusou’s Stability Criteria 

Consider the case of 63 equally spaced particle bunches 
circulating with angular revolution frequency 0, in a circular 
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accelerator or a storage ring. We choose a coordinate system 
such that the z-axis is along the direction of particle propa- 
gation. For the purpose of our discussion, we can neglect the 
repulsive Coulomb force between particles in the equilibrium 
st,ate, and we assume that the RF focusing force can be ap- 
proximated by a linear function, --wz.z, 
frequency i~?~ IS defined according to 

where the synchrotron 

(&,,” = - qllhl~~,, C-OS 1$3 

27rm,yR2 ’ 

where Q and m, are the charge and the rest mass of a beam 
particle, respectively; k is the RF harmonic number; R is the 
effective machine radius; and 77 = (l/r;) - (l/r*). We also 
assume t,hat all bunches have the same equilibrium particle 
distribution described by a distribution hmction fo(,z, u2) in the 
phase space, where z and 1:; arc the distance and the rclntivc 
velocity with respect to thr rcfcrcncc particle at the bunch 
center. Neglecting the relative motion among bunches, the 
following Sacherer’s intrgral equation for the coherent modes 
of longitudinal perturbations can be derived from the linearized 
Vlasov equation:3 

(w - hs)Rl(r) = 

x JI (~)~‘=R,,,(r’,,,., (;) v’dr , 

(4) \ , 
where T = z2 + (~P~/w,)* is the amplitude of the sgnchrotron 
oscillation of a beam particle, w is the frequency to be solid, I 
and m are integers designating the azimuthal harmonics of the 
perturbation in the phase space of an individual bunch, Xl(r) is 
the Fourier content of the Ith harmonic of the perturbation in 
the phase space, 7~ is the azimuthal harmonic number around 
the ring, Z,(w + r2A2,) is the longitudinal impedance at the 
frequency w+nR,, and Jo is the kth order Bessel function of 
the first kind with argument. x. In arriving at Eq. (3) we lmvc 
assumed that thr equilibrium distribution function dcpencls on 
r only, and we have neglected t,he time-of-flight effect.5 

For a narrow-band resonator impedance, we nwtl only t,o 
consider those modes with frequencies very close to the reso- 
nant frequency of the cavit,y. Thus, we need o111y to considrr 
the cases of ?Z = fh, 1 = ztl, and m = +1 in Eq. (3). One 
therefore derives thr following t,wo equations: 

(w - tis)R,(r) zz - ii df, 
r (‘I,).i’($,)“wl - r-,1 , (5) 

and 

(w-tw,)R-,(r) = - !A if!? r (d,)J-l(~)2(i)(r,-r-l) , (6) 

where A = ~2M~~fio/(~~h~,~), 

and 
z(w) = Z+h(u + fL%) - if-,,(w - hfi,) : (3 

rm = irn R,,(r)J,, (;)rdr . 

Multiplying both sides of Eqs. (5) and (G) by rJl(!~r/n) and 
integrating over r, we obtain two linear equations of rl a.nd 
rml. For nontrivial solutions of r1 and r-1, the determinant 
of the coefficients of these quantities must be equal to zero. 1% 
therefore have following dispersion relation: 

2 + Ld; - ‘i19,Lds2(s) = 0 . (0) 
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27,,, =A~iS[J7,,(~)]Z~dr (10) 

In ol)taining Eq. (9), we have made a change of variable of 
3 = -iu, in order to make it easy to apply Routh’s critcrion6 
for invrstigating thr roots of Eq, (9). If the real parts of all the 
root,s are eq\A to or lrss than zero, thrn the system is stahlc; 
othcr\visc there is an instabilit,y. 

For a narrowband resonator impcdancr, we can use the 
following approximations: 

Z*th(w rt hn,) = R 
A 

l+-Ciitandy , 
> 

(11) a 

wlwro (Y = wn,/(2Q). Sllbstituting the above impedances into 
Eel. (O), yiel(ls 

s4 + 2as3 + (wi + a2 SK2 c&).3” 

2 +2ow~s+ck w ; xc2 $39 - 

where the red~cerl form factor F,, is defined as 

F,,, = - ~{.i”~[~,~,(~)]‘di}/[~gi,(l.:i.d~] 

(13) 
The contlit,ions for stability. by Routh’s criterion6, arc 

sin (29,) < 
av, cos 7) 9 

F,I’R ’ (14) 

Xld 

tandy > 0 (15) 

J\‘e note that, except for the factors 2/F,, Eq. (12) is the same 
as the dispersion relation obtained from the equivalent circuit 
formalism, iIn<1 the stabiljty conditions derived here arc the 
same as thr stability conditions in Inequalities (1) and (2). 

Dipole-Quadrupole Mode Coupliug 

If th> c~1ladrl~pole modes arc included, we nred to consider 
the citsrs of n = fh, 1 = il, 1 = 12,nz = fl, and ,,I = f2. 
Using thct similar procedure in deriving Eq. (12), we obtain 
the dispcraion relation 

.c 6 + 20 2 + (5dZ + a* sec2 4,) 94 + 1ocuwJz 53 

+[LJ;’ + 5*(n * scc2 4, - 4%,n2(21, + 402) tan4,]s2 + 8adi.5 

+4n’&~(ti~ sec2 dy + lG’X’Olt?~ - 4TwJ(G1 + il,)tan $,,I = 0 
(16) 

The conditions for stnbilit.y, by Routh’s criterion, are 

lGRl9, 
tandy>- , 

3U, 
(17) 

( 4Riil 
tan oY - - 

)( 

4ROz 

W.3 
tan+9 - - 

> 
+1>0. (18) 

WS 

Combining Inequalities (17) and (lS), we can derive the fol- 
lowing skibility conditions: 

111 If sinc5, 2 [28/(1 + 01, where < is defined in Eq. (22) 
bc!low, then 

I < 3 tan 4yVn, cos $I3 

4F2R 
=IdT , (19) 

where 

Id = 
2v, cos $Js 

FIRsin (26,) 
(20) 

is the maximum staljlc current for the dipole mode when there 
is no coupling with the qlwirupole mode, 

3 sin* C#J 
T=V 

41 ’ 
(21) 

and 

4-2, (22) 
1 

PI For Pv’?/(1 + :)I 5 sin& 5 [4dm]. there are 
two srlbcases: 

(a) for l/2 5 E: 

I<IdT , (23) 

(b) for [ 5 l/2, thcrc are two stahlc regions: 

and 

where 

I < IdT- , (24) 

IdT+ < I < IdT : (25) 

T+ = sin’ dy [l + 5 k J(l - [)2 - 4[ cot’ 4,] ,/(z,c) . (26) 

[3] If r4JY-l < sin$Y, tlicn 

I<IdT- (27) 

The condition described in Inequality (27) corresponds to 
the limit of the beam current in the majority of practical cases. 
It can be shown easily that when [cot’ Qy is very small, the 
conditions in Inequality (27) reduce to Robinson’s stability con- 
ditions. 

Numerical Results aud Discussions 

The reduced form factor PI and the parameter [ are plot- 
ted in Fig. 1 and Fig. 2. respectively, as functions of 9 = 
(iz L/ZRi for some equilibrium distribution functions. As wc 
can see in Fig. 1: the values of the reduced form factor Fl 
for different distribution functions all converge to the value of 
two when the value of 9 or the bunch length approaches zero. 
As t,he hunch length increases: the value of Fl goes down for 
all distribution funct,ions, and the separations between curves 
tend to incrcnse. Thcrrforc, for long bunches, the masinluln 
stable current is nct,ually highrr than that given in Inequality 
[~~T~~;~$t jn Fig. 2 indicates that, except for long blmches, 

< 1s usually much smallrr tllari on?, ilnd t,lle values 
of the [ for different equilibrium functions all converge to zero 
when 9 goes to zero. 

The quantities T-, T+, and T represent the ratios be- 
twcen the maximum stable beam current with quadrupolee 
dipole mode coupling and the maximum stable beam current 

(a) !“(I-) K (1(2v - 1.) 

(b) f‘,(r) ‘X B(L - 22) 

(r) f,>(V) h rxp [-2(21-/I,)‘] 

(cl) f.(r) I jr,? - 41~‘~ 

(c) f,,(r) n (L’ -- .lr’) 
\\__; (a) 
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g = (lir./zn, 

Fig. 1. The reduced form factor Fl as a function of the parameter $J for 
the distribution functions. 
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(a) f>tr) 1 h(?r - Li 

(b) f.(r~ 2 OIL - 27) 

(c) joiT, x i~Y[,[-2(2i/Ll'~ 

(d) J,,(TI ,x w 

(e) f,lV) ,7x (I,’ - 16) 

” ,I I, 2 “4 06 08 10 L2 14 16 

,j = (f‘LlZ/?) 

Fig. 2. ‘l‘llc q~~xr~tilj, [ its a functiol~ of 9 for ~liff~*wl>t clist1~ilnltii~lL 
IuIhAiolls. 

tlipolc lnotl~~ coupling ;mtl the masimmn Still)lC l>cnX~ clllr<‘nt 
for tlil)o!v ~notlc lwrturlmticm only. 11’~: note that only T can 
lmve V;I~IICS 1~5s thm one, and tl;is happens ody when 3 sin” 
0 ii < 4[. I\‘(, also note tht the masin~~~nl wlws of T+ :UK! T 
Ciill be its lit~~(’ ilS few. Thus. if the wgion of 3sin’ 0, < -I( 
can 1w :~voith~tl; tlwn the nlilsilr:lun st;~l,lc cluuwt actll;llly (‘ail 
1,~ lliglwr tltau that I)rcclictratl 1,~ Robinson’s critcriil. 

Tlw uun~cric:d ~alws of T-, T+, and T are sl~wn in Figs. 3 
to 5 a.5 functions of [ for various vducs of the dct,~uling angle 

2 8) 
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f-! 

g 16 

:: 
3 I 1 

iz 

12 

1” 
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t = t&/F‘,) 

Fig. 3. ‘1‘11r cr~~~rc~~~t I’CL~~O T- as a fullc,tion of < for variuw valric* of the 
dct ,l,~,,,g aigk d,. Thick c,ir\‘cs C-OWP.~ pon<~ to the ent wn,e va~uea of T-. 
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Fig:. 5. The rurre11L L.a(io T as a fillKlh of t for \arious values of tl1c 
detuni~lg angle by. Thick cur\-cs ~orrc~~mud to thr extretnc values of T. 

dy. As can bc seen in tllc. figures. the higl;cxst stable currmts 
are d\vays in the regions of sudl t alid sln;d cnvit!. (L~tuning. 
\Vc rrrnintl the: rmtlcrs that cavit,y tlctwling is MYYssary lv- 
cause finik RF Imwer is used for accrlcration w lmnchi~~g~ and 
becnu5c t,hc rcquirctl I)hasc bet,wccn tllr total Vo!t;lgc of the 
cavity and tiic, lwan~ ciwrc,~lt is mi\intain(kl l,y colulmwatillg 
the benm loading with tlw IiF pmvcr. Tln~., ill nLc)ht sittm- 
t,iom, s~dl cavity dvtuiliug implks higlwr cavity voltag;cl, :lllll 
the ~mwcr coilsnlnptioi~ is liiglicr than millink;lily rcq~kil. 

Conclusion 

\\‘c lmvc rederivccl Robinson’s stal)ility crikria l)y rising 
the \‘lasov eqlmt,ion. The results derived from the Vlasov CC~KL- 
tion also iuclutlc the form factor corrrction for diffwcnt equi- 
lil,rium distributions in the I)hnse space. JVe llilVl2 also stutiirtl 
thr cmlpling trctwcrn t,he tlipcdc and rp~adr~~pole modes with 
n rrsonntor inpxlanrc. It, is shmvn that for small cavity tl(a- 
tuning, the maximal stahlr bcarn current cm be highrr than 
Robinson’s limit witllont caul)ling. !\%c;~ 3 sin2 da < 4<> I hc 
t lwesholtl currcut is lower than Robinson’s limit ant1 the tlm41- 
oltl curwrit drops to zero lilac tanC), /[. 
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