
A Unified Approach to Building Accelerator Simulation Software
for the SSC

Vern Paxson’, Cecilia Aragon, Steve Peggs,
Chris Saltmarsh, and Lindsay Schachinger

SSC Central Design Group**
“/,, Lawrence Berkeley Laboratory

Berkeley, (2.4 94720

Abstract

To adequately simulate the physics and control of a complex
accelerator requires a substantial number of programs which
must present a uniform interface to both the user and the in-
ternal reprrsentat,ion of the accelerator. If these programs are
to br truly modular, so that their use can be orchestrated as
needed, the specification of both their graphical and data inter-
fac(,:, mllst 1~ ca.rcfully designed. TVe describe the state of such

SSC simulation software. with emphasis on addressing these uni-
form intcrfacc, IXYY~R by using a standardized data set format and

object-oriented approaches to graphics and modeling.

Introduction

For the SSC to work requires thorough simulation of different
PI designs and oprrational procrdllres Without detailed un-

derstanding of the machine’s physics and how t.o deal with its
variolis sources of error, it will prove impossible to effectively
cq”‘ratc~ t,11c, ;3ccr1crator. 1s’e are therefore developing a 1argP
software syytern to simulate the machinr.

Thr goals of the simulation are three-fold: (1) t,o strldy t,he
I)llysic.; c)f difftmm: tlcsigns of the accclrrator, (3) to dc~lop
high-level opc,rational experience of controlling the machine in
tllc- fi3r.c <)f i~nti(.il)ilt(~(l (‘rrorh. and (3) to blliltl the simulation
iu >rlcll ii nay that it (‘ill1 lntcr br llsc~cl with the real accclrra-
tar. tl;lxl~[.f~ll~lill~ 1,urt’ sim~&tic~n. For thr, SSC. the, prograIns
c7iil)od!~irig tllcs I)llysic-5 for tllc sinililation spa11 a large’ rangca of
(liff<~r~~n~ tyI)c*s of modc,ls of thr at,crlcrat,or. different input ard

c>lltI)llt f(,rnlitts. ant1 diff(‘r(ant hardwar<,. 111 addit,ion. the simula-
tions iucllldr highl>- graphical interfaces to cxnablc t,he physicist
using rhrm to visual& aspects of the machine’s behavior and
tllcwl)y l)uiltl intllitioll. The Inor<’ &~ctivc~ these int(arfaces. the
nior(’ cffpctivcb the simulation.

When trying to develop a large, unified body of simulation
software siicli as this, a number of software engineering issues
arias:

. How do the different parts of the simulation talk to one
another? Diffcrcnt modeling programs written by tliffercnt,

people will ha\re different, input and output formats. Large
quantities of data must be somehow coherently managed
and accessible across heterogeneous networks. How does
011c tlca! with this withoilt being ovcrwhclmcd with iln-
wieldy ASCII files, cryptic command sequences, and error-
prone drudgery?

l How to avoid spending all one’s time trying to writ? ef-
fective interact,ive graphics for the simulation? How t,o

sustain a uniform user-interface across the different sirn-
ulations? The benefits of being able to visualize and di-
rectlq manipulate the simulation’s workings are enormous,
but the software investment can be very large. One can’t

l Lawrrnct Berkeley Laboratory Work supported in part by the United
Stat,ps Depement of Energy under Contract Number DE-.4C03-76SF00098
** Operated by the Universities Research Association, Inc. for the C. S
Department of Enwgy.

simply build a general high-level graphics library and ex-
pect to then quickly piccr togcthrr whole int,erfaces from
it. Effective user-interfacrs trnd to he .&ni~ar t,o one a~

other but not identical, making pre-canned solutions such
as libraries inadequate. Often one winds up copying cod?
from existing interfaces and then modifying it somewhat,
to suit the t,ask at, hand, leading to the horrific problems
of maintaining a mass of almost-hut-not-qllite-dtlplicatetf
code.

l How to design the simulation so that in the future it cau
operate on different models of tha accelerator? What hope
can one have of truly “plugging in” to the real machine.
and turning the simulation into high-level control? Unless
one begins early with these goals in mind, the simulation
programs run a great danger of having wired into their in-
nards all the global variables of the one modeling program
currently at hand.

The body of this paper expands on the following approaches
to addressing tliesc issues:

To deal with the problem of intrrconnr~ct~iIlg disparate pro-
grams and transparently moving dist,ributed dat,a across hetero-
~S(YICOUS nt+works. we have drv~lopcd R standard data format in

which data objects are ‘.self-describing,” i.e., contain informa-
tion about their structure as well as the actual data. Coupled

with a tlistrit)uWd dat,at)aw PI . this will provide t,hr backbone of
a sofi71~a~e b,uL a common. machine-indepmdent protocol which
difft-rc>nt programs call be plugged into to talk to one another.

The, prot)l(~rrl of baaing ablr to rapidly trwtr ntw user-intcrfac.<-
by specifying differences brtwren them and existing ones, and

to sustain a uniform user-interface across the t,ntire host of sin-
ulation software. is especially amenable to object-oriented all-
proaches. Rather than building a graphics subroutine library,
we are developing a hierarchy of graphics classes, which can be%
rradily rxtrnded and modified without duplicating code.

Finally. the general problem of dev<~loping rnodel~indcprntlcrlt
simulations is also vrry well-sllit,rd to an object-oriented ap
preach. By using classes to abstract thP components of the
accelerator simulation, we can build a syst,em which will. with-
out, changcx, work with today’s modeling program, t,omorrow’s

modeling program, and, eventually, the real accelerator.

Taken together, these building blocks can provide the basis for
a highly effective and flrxiblr simulation systrm.

Standardized Data Sets

.&I integral part of our software system architecture is a uni-
form way to represent, and communicat,e data. The solution must
address several needs:

l data must be jelf-describing. That is, it must contain an
internal description of its format. both low-level (“array

CH2669-O/89/0000-0082501 .@I B 1989 IEEE

© 1989 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1989

c,f 512 tloul)les“) and higll-level (“aggregate named ‘Twiss
parameters’. consisting of .”);

o the format must impose minimal overhead. Reading largr

data sf,ts should br as fast or nearly as fast as direct11
reading binary data. The data must retain maximum pre-
&ion:

l data must be readily transportable across heterogeneous
networks. and in a transparent fashion (no explicit data
conversions or network manipulations necessary);

o the data format must not be specific t,o disk files, but al-
low for alternate representations such as database entities.
*harcd rrlm~ory. and distributed access.

To this rnd WV have drvrloped an initial design and imple-

mentation of a Self-de,scrihing Data Standard (SDSL3’), which
ungirts th al~ovc ~~ccds. The SDS library is callable from C, FOR-
TR.AN, and C++ programs. and currently supports Vax, 65000.
and SPARC binary tlata formats. Thfl first part of an SDS de-
scribes the byte-ordering, data types, and records in the data
set. The remainder holds binary data, which is not converted to
it “e;csnc%ric” format but remains in its native representation along
with c~mngh information to convert, it t,o ot,her representations.

To date SDS has been used: to take turn-by-turn data on
the Tevatron for analysis on Sun workstations: to take magnet
quench data on Vax computers running VMS: also for analysis
on Suns (running Unix): and to represent the SSC lattice op-
tics and multipolr rrrors for communication between the thin-

element Teapot [41 modeling program and the differential-algebra

Xh1AP[“l modeling program. The data sets can reside on disk
or tape. in the distributed database, in shared memory, or in
~~uu’v;~ n~~rldjry. To& exist to list, the, contents of data se&.
I~~OV'C them from one representation (e.g., disk) to another (e.g..
4m1vtl u1~111ory), I)t.rfornl (Iat,a tr;tllsforllli\tiOIls (e.g., FFT). prt,-

vitlo craplli<.al rc~presentatiorie (various forms of plots), and to
alltomatic.ally ,gr’~~c*ratc, data -;cxts from a list of FORTRAN conl-

111011 t,lwk>.

OIIU IIS’ cjf SDS will RL’CW tlramatically ill the near future, \V(

plnn for it to become the mc~dium of choice for all our data
c.otllixilll~ic.;ltioll. thus I)ro\-itling a uniform way for disparate pIo-
grams to c.on:mlmicatc~ with cm<’ anoth(~r. More SDS-r&t4
tools will lw tirvelopc~d. such as a hrowsc,r for axplorine; the
liigli-li~c1 itruc’tlwc of a data set. filtcxrs for selecting parts of
data sc‘ts ;111d/or combining data sets, and additional transfor-
maticm and analysis tools. Further work is also needed for mak-
ing SDS-accr,ss fully trnnsparcnt wit,h resl)ect to represent&ion
and nctworking.

An Object-Oriented Approach to Graphics

Having tlcvr>loprd three generations of graphical int,erfaces for

acrelrrator contrcJ’61[71 Ix1 , we have come to appreciate how much
effort OIIC can spc,nd writing and mainta.ining effect,ive inter-
facr,s and how difficult it can be to directly reuse or build on
large portiorls of existing ones. The last of these generations
rndenvourcd to facilitate rrusr by building a hiera.rchy of graph-
ical “packngcs.” MCII lrvrl of which supported the operations
of louver lcvcls plr~s additional functionality. For example, the
window pwckagr implcmcnt,rd a simplr window with an integer
coordinate system and some line and text drawing functions.
Thcs~ windows hat1 concepts of alignment with other windows.

font sizrs, colors, and mouse-clicks. The next level in the hi-
erarchy, world window, was a “window” plus the concept of
a world (floating-point) coordinate system. Similarly. split
world window extended these to have a wrap-around point in
the coordinate system. useful for representing objects such as
accelerator rings where the beginning and end are at the same
point. With this hierarchical approach, simple concepts such
as “window” could branch out into different types of refinement,
each of which could support the same basic functions (like “draw
a line”). When writing new interfaces, one would select the nec-
essary set of packages and then write the code to interconnect
them.

We learned that trying to build such a hierarchy without sup-
port for it, dirert,ly in the language (we were using C) is very diffi-
cult. One either winds up with a tangle of similar-sounding-bu-
different routine names (window-draw-line(); world-window-
draw-line(); split-world-window-draw-line0 . ,), or pack-
ages which are second-class citizens-they don’t support all t,he
functionality of the package on which they’re built, making in-
terconnecting different packages very painful.

These problems cry out for object-oriented solutions. In an
object-oriented language, the analog for a package is a class.
Classes encapsulate both data associated with a concept (such
as the coordinate system of a window) and functions (such as
“draw a line”). An instance of a rlass is an object; one oper-
ates on object,s by sending them messages telling them which
function to perform on themselves, altering their internal state.
Given some concept represented by a class, one can refine the
concept by deriving a subclass from t,he original. Derived cla.sses
inherit all of their parent’s functionality and state, plus the5
can introduce additional functionality. These extended classas
are fulJ-fledged citizens; any operation which can be perform4
on the ba.se class ran be performed on the extension. Further-
more. they can change how functions defined in the parent, work
for themselves. For example. a world window class can specify
that ill “draw a. line” function means “same as for window ex-
cept use the floating point coordinate system”, overriding the
previous definition. Then any routine written to deal with uin-
dew’s can be handed world window’s as well. When the routine
t,ell:: the object to draw a line, the correct version of the func-
t,ion is automatically used. Thus we gain two enormously useful
advantages:

l Kew concepts can be created simply by specifying the dcf-
ference$ between them and an existing concept; and,

l Routines can be written which will automatically work
with future, unforeseen extensions t,o current classes, with-
out requiring modification.

Passing messages around and automatically figuring out t,he
right routines to call sounds potentially very inefficient. Fortu-
nately there are object-oriented languages which are designed to

maximize efficiency. One of these. C++ “I is upwardly compat-
ible with C and delivers the same high periormance. Better still
for our purposes, a graphical toolkit written in C++ is abailable

for use under X Windows[“’ (and possibly other platforms in

the future), which gives immediate portability advantages PII

Called InterVirws’121 , the toolkit, provides roughly 75 classes
for writing user int,erfaces. The cla.sses are all highly extensi-
ble (as one would hope!). \1’e are now redesigning the graphical
interfaces to all our accelerator simulation software to use In-
trrViews. By using one common toolkit we can ensure uniform

83

PAC 1989

user intcrfacrs throughout the entire body of graphics soft,warc.
To date classes have been written for interactive data plots, in-
cluding zooming, panning. selection of points of interest, differ-
ent styles of plotting, and fitting curves to data points; and for

simple ways to create buttons, menus. cursors, dialog boxes, and
text messages (all derived from more general Interviews classes).

Using these classes we have developed interfaces for interactive
chromaticity plotting and correction; decoupling; beta, eta, and
closed-orbit plots; and viewing turn-by-turn plots, phase space
plots. and smear plots of tracking data. (See elsewhere in these

proceedings”’ for examples.) Already our collection of classes
enables us to rapidly construct interfaces. As the class library

grows we anticipate being able to create more and more elabo-
rate interfaces just as easily.

An Object-Oriented Approach to Simulation

One of the boons of using object-orient,ed graphics is that in
the process it becomes apparent how well-suited the approach
is to other software problems. In particular, the ability to de-
fine a concept as a class and then refine the concept in different
ways meshes extremely well with the goal of creating flexible
simulation software. We are presently developing a set of “Ma-
chine” classes which abstract the models used to simulate the
accelerator. So far, classes representing tracking data have been
developed, and the beginning of a cla.ss encapsulating the gen-
eral functionality of the modeling programs (such as “compute
tune” , “get/set multipole strength”, etc.) is underway. The
former have been used to develop programs to comput,e smear
and graphical interfaces for exploring turn-by-turn data: the lat-
ter now replace explicit calls to modeling program routines in
simulation programs.

Once all simulations are written in terms of the modeling pro-
gram class. we will be able to transparently “plug” different
modeling programs into the entire simulation, and. ultimately,
t,hcl tlatabasr and control system of the actual accelerator. Wit,h
this approach. we can develop simulation software for immedi-
ate’ 1~: lvhich Ivill also br dirc,ctly applicable to the subseqllent
high-level control of the real machine.

Summary

We are now developing a large body of software to simulate
t~he physics and high-level operation of the SSC. If this software
is to form a unified and flexible whole, we must, solve a num-
ber of software engineering problems that will otherwise render
the system so bulky as to become effectively useless. To this
end. we envision (1) the Self-describing Data Standard as pro-
viding a “software bus” on which programs can be plllgged in to
talk with onr another and data transparently moved across hrt-
erogeneous networks; (3) a library of InterViews-based graphics
class(~s to provide a way to rkpidly create new interfaces and to
ensure uniformity across all our interfaces; and (3) a library of
model/machine classes to enable us to generalize our simulation

to a variety of n>otlels of the accelcrat,or. and, ultimately, to the
actual machinr.

We have a vision of how a truly effective accelerator simulation

and high-level cont,rol system might look. In it, the user orchrs-
trates a suite ‘of interactive simulation programs, calling forth
those relevant to the task currently at hand. With each such

view, the user can se1cc.t an objcact t)c> it lo\\~-lrlv~l sac11 as an in-
dividual magnet or high-level such as a non-linear chromaticit)
curve. and then summon a list of relevant operations. or queq
the object regarding its status, its history. and its meaning. fol-
lowing cross-ties to related object,s. The llscr can attach objerts
to “clip-boards” for later reference. or move them between views
to see them from diffrrcnt, simulation perspectives (for example.

select the working point achieved by a modeling program using a
linear model of the machine, send it to a different program which
includes nonlinrarities to see if it can also achieve it; t,ake t,hr
results from both, drop them into the Twiss parameters view to
see how the optics are effected; or drop them into the Tracking
view and, once tracked, into the FFT view to see what the ac-
tual tunes are). The goal would be to liberate the user from t,hcT
drudgery that makes mixing simulation programs tedious and
error-prone, and to give the user different visual perspectives of
the simulation, that they might synthesize the different mod-
els of the machine and build better intuition as to the overall
pict,ure.

On the surface this vision seems far-fetched, perhaps over-
whelmingly expensive to implement. But given a software bus.
an approach for developing extensible, uniform interfaces, and
a way to abstract modeling programs to render simulation soft-
ware independent of them, the cornerstones arc all in place. On
this foundation such a unified system can truly be built and
turned into reality.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

References

L. Schachinger. ct. al., “?rIodeling the SSC.” these proree(l-
ings.

E. Barr, S. Peggs. C. Saltmarsh, “Relational Databases for
SSC Design and Control,” these proceedings.

C. Saltmarsh, “SDS usage documentation.” SSC report in
preparation, Berkeley.

L. Schachiqger and R. Tahnan, “TEAPOT. A Thin Element
Accelerator Program for Optics and Tracking.” Particle Ac-
celerators 22. 35 (1987).

J. Irwin and S. Peggs, “8pplication of Multivariable Maps to
Lattice Design and Analysis,” these proceedings.

V. Paxson, et. al., “A Scientific Workstation Operator III-
terface for Accelerator Control,” 1987 IEEE PAC, p. 556.
Washington, D.C.

L. Schachinger, “Interactive Global Decoupling of the SSC
Injection Lattice,” Proceedings of the European Particle Ac-
cc,lrrator Conference. Rome, .4ugust 1988.

V. Paxson. S. Peggs, and L. Schachinger. “Interactive First
Turn a.nd Global Closed Orbit Correction in the SSC,” Pro-
ceedings of t,hc European Particle Accelerator Conference.
Rome. .4ugust 1988.

B. St,roustrup. “The C++ Programming Language.” i2ddisoli-
r1Tesley, Reading. hiassachusetts, 1986.

R. Scheiflrr. J. Gettys, ‘.Thc X ‘IVintlow System.” AChl Trans-

actions on Graphics, No. 63. 1986.

V. Paxson and E. Thcil, “Towards Portability in Model-Based
Control Software.” LBL-24723. November 1987.

M. Linton. et. al., “The Design and Implementat,ion of Inter-
Views,” Proceedings of the CSENIX C++ Workshop, Santa
Fe. New Mexico, November 1987.

84

PAC 1989

