RF BEAM DEFLECTION MEASUREMENTS
AND CORRECTIONS IN THE SLC LINAC*

JOHN T. SEEMAN, MARC C. ROSS,
JOHN C. SHEPPARD AND RAE F. STIENING

Stanford Linear Accelerator Center
Stanford University, Stanford, California, 94305

ABSTRACT

The requirements of RF acceleration in the SLC Linac to
produce high energy beams are complicated by the presence
of small transverse RF beam deflections which arise from several
sources. These RF deflections place stringent tolerances on the
phase and amplitude stability of the klystrons. They also force
the use of special magnetic bumps to correct the trajectories
of oppositely charged beams that will pass down the linac.
If left unabated, RF deflections can limit the performance of
the SLC. There are several methods to reduce the deflections.

TOLERANCES ON RF BEAM DEFLECTIONS

The SLC linac must accelerate both electrons and positrons.
Both beams are injected from their respective damping rings at
1.21 GeV and ultimately reach 50 GeV. The transverse emit-
tances of these beams are quite small and must be maintained.
Trajectory errors in the linac will cause the beams to exhibit
betatron oscillations in the FODO lattice of the linac, excite
transverse wakefields, and enlarge their emittances. Static tra-
jectory errors can be corrected by DC dipole magnets. How-
ever, studies1,2 have shown that pulse-to-pulse fluctuations in
the launching conditions or steering early in the linac must
be kept below 13 pm or 0.3 μrad (β = 42 m). These jitter
tolerances relax as the beam energy increases.

Small radial asymmetries in the RF fields in an accelerator
will deflect beams transversely. The effects of these fields can
be observed as beam trajectory errors downstream of an accel-
erator section driven by a klystron. An example is shown in
Fig. 1. In the SLC, both electrons and positrons are deflected
in the same direction. Special static magnetic bumps are used
to compensate for these deflections. Fluctuations in the RF
power or phase will cause trajectory errors which cannot be
corrected. Using the tolerances stated above and the fact that
klystron phase and amplitude jitters can be kept below 0.5 de-
grees and 1%, respectively, RF deflections must be kept below
50 keV/c per klystron immediately downstream of the damp-
ing rings2, i.e., the RF fields must be aligned to one part in
five thousand.

STATIC TRAJECTORY CORRECTION

Identical RF deflections given to both electrons and
positrons can not be corrected by a single dipole magnet which
steers the beams in opposite directions. However, several dipole
magnets with interspersed quadrupoles can form a “magic”
dipole bump which can be used to correct the deflections. Sev-
eral magic bumps have been invented4,5. An example is shown
in Fig. 2. The bump capitalizes on the out-of-phase beta func-
tions of the two oppositely charged beams in the linac FODO
lattice. The three dipole correctors form a closed beam bump

The kicks of the two beams in the central quadrupole exactly
cancel those of the lumped RF deflections located there if the
bump sign and amplitude are properly chosen.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig1.png}
\caption{RF deflections of a beam in an accelerator are observed
as beam position changes downstream.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig2.png}
\caption{A “magic” dipole bump corrects for static RF deflec-
tions given to electrons and positrons.}
\end{figure}

SOURCES OF RF DEFLECTIONS

RF Couplers

The power from a klystron is divided to feed equally four
ten foot accelerator sections which are mounted on a forty foot
girder. The single sided horizontal input and output couplers
produce asymmetries in the RF fields in the first and last cells
in the each section. A coupler and accelerator cavities are
illustrated in Fig. 3. The deflections have been minimized
in the SLAC accelerator by displacing the first and last cell
radially and by orienting the eight couplers on a girder so as not
to produce a net deflection or offset. Nevertheless, effects of the
couplers have been observed6. A calculation7 for SLC SLED
II 50 MW conditions gives 20 keV/c deflections per coupler.

Tilted Irises

External mechanical measurements of several accelerator
sections have revealed that the irises of the cavities can be

*Work supported by the Department of Energy, contract
DE-AC03-76SF00515

© 1985 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers
or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Mechanical misalignments can cause RF deflections. A laser monitoring system is used to align the ends of the girders to better than 100 μm over the length of the 3 km linac. Within a girder, a local survey is used. Figure 6 shows the survey data of a girder with several problems: the welded joint between two accelerator sections has an offset, one section has an internal bulge, and the intragirder supports are misadjusted. All of these effects have been removed from the first 300 m of the linac to a level of ±100 μm or about ±10 KeV/c.

Simple calculations of deflections can be made by assuming the RF fields rotate with the same angle as the irises. The expected transverse deflection δp is given by

\[\delta p = \frac{1}{c} \sum_{i=1}^{n} T_i \delta E_i \]

where c is the speed of light, n is the number of cells, and T and \(\delta E_i \) are the tilt angle and energy gain, respectively, for cell \(i \). The SLC tolerances require that the average tilt angle for an accelerator girder be below 0.21 mrad early in the linac. The tilt angles for several ten-foot sections have been measured and the spectrum is shown in Fig. 5. Several of the accelerator sections exceed the specifications and must be exchanged.

Trajectory Errors

A beam which has a trajectory error in a girder will be given a transverse deflection arising from the combined effects of the fringe-field lens at the ends of the girders and the effectively misaligned fields within the girder. The transverse deflection is given by

\[\delta p = E_0 (x_2 - x_1) / 2L \]

where \(E_0 \) is the energy gain in the length L and \(x_1 \) and \(x_2 \) are the entrance and exit beam offsets, respectively, from the axis.

DEFLECTION MEASUREMENTS

Measurements of RF deflections in the linac were made using the apparatus shown in Fig. 7. Without RF power the beam was steered to the center line of the girder under test.
When the RF was applied the beam trajectory deviated (in general) from its nominal positions in two position monitors immediately downstream. From knowledge of the outgoing trajectory two effective RF kicks located at the one quarter and three quarters points inside the girder could be determined. Measurements were made as a function of RF phase allowing separation of the in-phase and out-of-phase components of the deflections. An example of a measurement is shown in Fig. 1. The beam energy in these tests was about 1 GeV. There were no magnetic fields in the region.

Fig. 7. Measurements of RF deflections were made by changing the phase of the RF power from a klystron which drives a forty-foot girder and observing the beam trajectory.

The first sixteen accelerator girders downstream of the damping rings were measured. The calculated in-phase deflections (Kick 1 and Kick 2) for eight girders are listed in Table 1. The out-of-phase components are similar. Several of the girders exceed the SLC specifications. A remedy for poor girders is to exchange them with good girders from the high energy part of the linac where the tolerances are greatly relaxed. The original Girder 2-4 was exchanged with a measured good one 700 m downstream. After the exchange, the RF deflections were remeasured and found to have moved with the accelerator sections as can be seen in the data of Table 1.

Table 1. Measured in-phase transverse RF deflections for SLED II 50 MW conditions.

<table>
<thead>
<tr>
<th>Girder</th>
<th>Kick 1 (keV/c)</th>
<th>Kick 2 (keV/c)</th>
<th>Kick 1 (keV/c)</th>
<th>Kick 2 (keV/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>-6.3</td>
<td>1.9</td>
<td>-13.4</td>
<td>3.8</td>
</tr>
<tr>
<td>23</td>
<td>-25.0</td>
<td>-11.7</td>
<td>-14.7</td>
<td>-5.6</td>
</tr>
<tr>
<td>24*</td>
<td>35.5</td>
<td>2.1</td>
<td>49.2</td>
<td>9.8</td>
</tr>
<tr>
<td>24**</td>
<td>0.3</td>
<td>9.0</td>
<td>-13.6</td>
<td>3.5</td>
</tr>
<tr>
<td>25</td>
<td>9.3</td>
<td>-11.2</td>
<td>-9.9</td>
<td>-0.5</td>
</tr>
<tr>
<td>26</td>
<td>-13.9</td>
<td>-0.1</td>
<td>30.2</td>
<td>1.5</td>
</tr>
<tr>
<td>27</td>
<td>-18.4</td>
<td>25.1</td>
<td>-5.2</td>
<td>-39.0</td>
</tr>
<tr>
<td>28</td>
<td>-19.1</td>
<td>61.4</td>
<td>84.3</td>
<td>-118.8</td>
</tr>
</tbody>
</table>

* Original girder. ** New replacement girder.

The RF kicks from beam trajectory errors in a girder have been studied on one girder. The measured kicks as a function of trajectory angle are plotted in Fig. 8. Additional measurements show that beam offset data look nearly the same. Clearly, beam trajectory errors (or girder misalignments) can cause sizable RF steering.

Table 2. Predicted and measured vertical RF deflections for Girder 2-4 without SLED at 28 MW.

<table>
<thead>
<tr>
<th>Predictions/Measurements</th>
<th>Kick 1 (keV/c)</th>
<th>Kick 2 (keV/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coupler Asymmetry</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Survey Errors</td>
<td>0.2</td>
<td>-0.2</td>
</tr>
<tr>
<td>Tilted Irises</td>
<td>17.2</td>
<td>-6.0</td>
</tr>
<tr>
<td>Total Predicted</td>
<td>17.4</td>
<td>-6.2</td>
</tr>
<tr>
<td>Measured Deflection</td>
<td>29.2</td>
<td>-3.7</td>
</tr>
</tbody>
</table>

ACKNOWLEDGEMENTS

We thank J. Jasberg, G. Loew, R. Miller and W. Panofsky for discussions of RF deflections and the SLAC Mechanical Engineering, Alignment, and Operation Departments for aiding in the measurements.

REFERENCES

5. R. Stiening, SLAC CN-12, (1980).