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INTRODUCTION 

The steady-state Child-Langmuir relatior. between 
current and applied voltage has been a basic principle 
upon which all modern diode physics has been based. 
With advances in pulsed power technology and diode 
design, new devices which operate in vastly different 
parameter regimes have recently become of interest. 
Many of these devices cannot be said to satisfy the 
strict requirements necessary for Child-Langmuir flow. 
For instance, in a recent pulsed electron device for 

USI in high-current accelerators,’ the applied voltage 

is sinusoidal in time. In another case, 2 development 
of scurces for heavy ion fusion necessitates under- 
standing of transient current oscillations when the 
voltage is applied abruptly. 

We derive the time-dependent relationship between 
the emitted current and time-depecdent applied \roltage 
in a “onrelativistic planar diode. The relationship 
is valid for arbitrary voltage shapes V(t) applied to 
the diode for times less than the beam-front transit 
time across the gap. Using this relationship, tran- 
sient and time-dependent effects in the start-up phase 
of any ncnrelativistic diode can be analyzed. 

A RELATISN BETWEEN EMITTED CURRENT AND APPLIED VOLTAGE 

In this section, we derive a” equation which re- 
lates global properties of one-dimensional, 
nonrelativistic charged particle beam flow in a diode 
to the applied voltage. Our starting point is the set 
of cold plasma equations for the particle density, n, 
flow velocity, Y, and electric field, E. 

Zln/3t + a(flv)/3x = 0 (1) 

av/at + v^dv/ax = qE/m (2) 

aE/ax = “q/E, . (3) 

The particle charge and Tass are q and m. MKS units 

have 3een employed so that DYE, x 10 -7 = c2 , where c 

is the speed of light. 
The electric field 1s the gradlent of a potential 

SO that E = -a$/ax. Placing the current source at x = 
0, and the collector plate cf the diode at x = L, the 
boundary -onditions for $(x,t) are taken to be 

$(o,t) = 0 , $(L,+L) = V(t) , (4) 

where V(t) is the applied time-dependent voltage on 
the collector plate. 

If Poisson’s equation is solved for the potential 
wi:h tne boundary conditions given in Eq. (41, then 
Eqs. (1) - (3) imply that the electric field satisfies 

the Amoere-type equation3 

E,L(aE/“ot) + Lnqv = -E,(dV/dt) + K(t) 

I 

L 
K(t) = nqvdx . 

0 
(5) 

We shall use Eqs. (1 ), (21, and (51 to obtain a 
generalization of the Child-Langmuir relation for 
time-dependent diode problems. In particular, a rela- 
tion between the line-integrated current, K(t), and 
the applied potential will be obtained as well as a 
relation between the potential and the current emitted 
at the diode source. 

Equations (1) and :2) may be used to obtain an 
equation for j = nqv: 

aj/at + a(jv)/ax = (nq’/c,m)E,E . (6) 

As is common in problems of tnis type, we will assune 
that particles are emitted with negligible velocity, 
so v(O,t) = 0. Thus, for nonvanishing current emis- 
sion, an infinite number density is required at the 
source. We will also restrict ourselves here to the 
case of space-charge limited emission so E(O,t) = 0. 
Considering only times less than the beamfront transit 
time across the diode, niL,t) = 0, and we obtain from 
Eq. (3) and an integration of Eq. (6) 

dK/dt = Nq2E(L,t)/2m , (71 

uhere the total particle inventory N is the integral 
of the density over the diode gap. 

I 

L 

I 

t 
qN:t) = q n(x,t)dx = j(C,T)dT - c,E:L,t) . (8) 

0 0 

Equation (5) provides a relationship betdeen the line- 
integrated current, the applied potential, and the 
emitted current density via the space-charge limited 
emission condition E(O,t) = 0, 

Lj(O,t) = -E,(dV/dt) + K(t) . (9) 

\Ie not? if we require that the initial .current 
vanishes, then dV/dt must also vanish initially. 
Employing Eqs. (8) and (9) in Eq. (7) yields 

d[qK(t)/L]/dt=1/(2c,mL) 

[i 
(1C) 

0 

where JI = (-c,/L!qV. The relationship between the 

current density at the emitting surface and the ap- 
plied voltage is obtained similarly: 

t 
d[qj(O,t)l/dt-:/(2f,mL) qj:O,r)dT 

[’ I 

2 

= d2v/dt2 

0 

(11) 

Equations (10) or (11) are generalizations of the 
Child-Langmuir relation for time-dependent diode 
problems. They describe the current pulse obtained 
from an applied voltage V(t), or conversely, define a 
voltage shape V(t) needed to extract a current density 
j(O,t) at the source. @oth relationships are only 
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valid for times less tnan the beam transit time across 
the dicde since they have been obtained from Eq. (7) 

using tne condition n!L,t)v’(L,t) = 0. 

CYLINDRICALLY AND SPHEHICALL~ SYMME'TH~C DIODES 

In this section, we generalize the treatment for 
planar d:odes to cylindrically and spherically sym- 
metric diodes. In these geometries, the presence of 
raJ:al moments in integrals of the continui:y equation 
prohibits one from obtaining a simple relationship be- 
tween emitted current and applied voltage. However, 
in the special limiting case of constant emitted cur- 
rent, the limiting voltage moy be obtained by 
numerically integrating two ordinary differential 
equations. 

We assJrIe that a potential V(t) is applied at the 
collector at r = r,. A current, jo( t) , is extracted 

atr-r >r 2 1’ 
The position r = r2 is held at zerc 

Dotential. Solving Poissoo’s equation for the poten- 
tial determines the radial electric field, E 
f lnds that in cylindrical geometry 

aruat + rj/Eo 

= (In r2/r,)-‘[dV/dt + K(t)/E,,l 

One 

(12) 

while i? sphericaL geometry 

ar 2 E/at 2 + f- .J/E~ 

= (‘jr,-l/r*)-‘[dVidt + K(t)/Eo] 

In these equations, 

K(t) = 
! 

r2 J(t,r’)dr’ . 

rl 

(13) 

(14, 

If we assume constant space-charge limited emis- 
s:on, in the Lagrangian frame of the beam front, the 
electric fields are then given by rbE(t,rb) = r2jOt/c, 

and rb2E(t,rb) = r22jOt/E, for the cylindrically and 

spherically symmetric cases, respectively. 
Consequently, the beam front satisfies tne differen- 
t ial equations 

d2rb/dt2 = (qjO/E0m)(r2/rb)t (15) 

in the cylindrically symmetric diode and 

d2rb/dt2 = (qjo/cOm)(r2/rb)2t (16) 

:n the spherically symmetric diode. We note that the 
beam-front transit time is greatest in planar and 
least in spherically symmetric diodes. 

For steady flow behind the beam front, K(t) may 
be evaluated using the relationships rj(t,r) = r2j0 or 

2. r2j!t,r) = r2jo. Substitut:ng the result in the ap- 

propriate Ampere-type equations for E, we obtain 
differential equations relating V(t) and r,(t). In 

cylincrical symmetry, we find 

dV/dt = (r2jO/EO) In (r3/r, ) (17) 

while in spherical symmetry LIL;’ cbtain 

dV/dt = (r:jO/EO)(l/r, - 1 /rb) (1%) 

We note that the beam-front positions which appear :n 
Eqs. (17) and (ld) are determined by Eqs. (15: and 
(16). The latter equations do not contain the poten- 
tial v(t). Consequently, Eqs. (15) and (16) may Se 
integrated directly to provide the source terms in the 
differential equattocs for Vit) to yield 

t 
V!t) = (r,jO/EO! In rb(T) dr - (Inr,)t (19) i 

b 

and 

V(t) = (r:jc/c 
-t 

,! t/r - 1 I 
r,‘(r)dr (20) 

0 

in the two geometries. 

SU?PRESSION OF CURRENT TSANSIENTS 

The analyses in the previous section provided an 
expression for the applied voltage iinich will produce 
a constant current in time. In real diodes, however, 
the appropriate initial condition is that the current 
vanish at t = 0 (V = 0) and therefore cannot be con- 
stant for all time. Therefore if the voltage 
predicted by Eqs. (19) or (20) or the equivalent volt- 
age proflle for the planar diode 121, is applied to 
the diode, there will be an initIa1 start up period 
where the current rises from zero to the predicted 
constant valde. Furthermore, real diodes only ap- 
proximate the special cases of planar, cylicdrical or 
spherical configurations. Therefore, in order to as- 
sess the usefulness of these solutions to real diodes, 
simulations of a diode design for heavy-ion fusion ex- 
periments were performed. 

Figure 1 shows the electrode configuration and a 
snapshot of the ion positions froni a simulation of a 
sodium ion diode designed for experiments at Los 
Alamos [5]. The calculations were performed with the 
2-dimensior.al, particle-in-cell simulation model ISIS 
iI61. Figure 2b shows the current measured at the 
right-hand end of the simulation region shown in Fig. 
1, as a function of time for the applied voltage shown 
in Fig. 2a. The voltage risetime is 10”s. The diag- 
notic measures zero current ur.til the particles reach 
the end of the simulation region, then rap:dly over- 
shoots the steady-state space-charge limited current 
and then decays to the steady-state value. 

The voltage profile shown in Fig. 3a was obtained 
by approximating the diode shown in Fig. 1 by a 
spherical diode and using Eq. (20). The voltage 
risetime is clearly much slower than tie current 
risetime shown in Fig. 3b. Althcugh the current 
profile is not exactly a step-function predicted by 
the simplified models, it has much less overshoots 
than the calculation in Fig. 2, while maintaining a 
fast risetime. 
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F1g. 1 ISIS simulation snapshot showing dicde con- 

figuration and particle positions. 
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Fig. 2 (a) Voltage profile for 10 ns risetime in ISIS 

simulation. 
(b) Resulting current profile showing 
overshoot. 
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