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Summary 

The moment equations that form the basis of the 
BEDLAM simulation code can also be used as a check on 
Particle-In-Cell (PIC) simulations. Moments can be 
computed as sums over the macroparticles used in the 
PIC simulations. These moments should satisfy the 
moment equations if the simulation is valid. A check 
has been done to sixth order for two cases: the 
RFQRZP code, which simulated a radio-frequency quadru- 
pole (RFQ) linac, and the BEAMTRACE code, which simu- 
lated the final focusing system in a heavy ion fusion 
facility. We observed how well the moment equations 
were satisfied for various values of the independent- 
variable step size and the number of macroparticles. 
Generally, we found that the PIC codes satisfied the 
moment equations very well. Because our modified PIC 
codes were able to compute moments that satisfied the 
correct moment equations, we were able to use our 
modified version of RFQRZP, which we called RFQMOM, 
to work on another problem. Every moment simulation 
code has to include some truncation approximation. 
The error of this approximation can be determined by 
RFQMOM before actually writing the moment code. As 
an example, we investigated the accuracy of the trun- 
cation approximation that is used in the BEDLAM code. 

Introduction 

To simulate a linac with the moment method,' we 
first specify the input beam as a collection of 
moments. The simulation code then integrates the 
moment equations, which govern the time evolution of 
the moments. No particles are traced in this ap- 
proach. The BEDLAM code,* which is currently under 
development, is a fourth-order moment simulation code. 

There is another interesting use for the moment 
equations. We can compute the moments from the parti- 
cles in a PIC simulation code. These moments must 
satisfy the moment equations if the simulation is ac- 
curate. Therefore, we can use the moment equations 
as a check on PIC simulations, which is similar to 
keeping track of the energy in a simulation with a 
time-independent Hamiltonian. The advantage of the 
moment check is that a large number of moments (209 
in fourth order) are available as checks and that 
these checks are available even in the absence of 
symmetries. 

In this paper we present the results of moment 
equation checking in the RFQRZP code, which is the 
standard RF0 simulation code in the RFOLIB system,' and 
in the BEAMYRACE code.' We will demonstrate-that-the 
moment equations are well satisfied by these PIC codes. 
Because of this, we were able to study the validity of 
the truncation procedure that is used in BEDLAM. 

The Moment Equations 

Let g(%,G,t) be a function of phase space and 
time. We define cg> as follows: 

a3> = I d;d$ g(;,;,t) f(;,;,t) , 
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where f(?,G,t) is the normalized distribution function 
in phase space. The distribution function f is as- 
sumed to satisfy Vlasov's equation 

%+7j.$ +.l(C+ql) l af=o , 
a; 

where f is the external focusing force and? is the 
space-charge electrostatic field. 

The dynamical variables in the BEDLAM code are 
the moments 

<x "1 "2 "3 "4 "5 "6 
1 x2 x3 v, v* v3 > . 

The sum nl + np + . . ..n6 is the order of the moment. 
The time evolution of these moments is given by the 
moment equations: 
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Here the following abbreviation has been used: 

a. 
1 

= f(P + q * 

(3) 

Equation (3)is a set of coupled, first-order dif- 
ferential equations. Expanding the terms ai in power 
series of Xi makes it possible to rewrite the last 
three terms of Eq. (3) in terms of moments. For de- 
tails about the computation of the coefficients of the 
Taylor's series see Ref. 1. If the forces have non- 
linear terms, the computation of the temporal deriva- 
tive of a moment of order n requires the knowledge of 
moments of orders n+l and higher. 

The Codes RFQRZP and BEAMTRACE 

RFQRZP is a 3-D PIC simulation code contained in 
the RFQLIB system. It computes space-charge effects 
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using a 2-D r-z Poisson solver. The boundary condi- 
tions consist of a conducting circular cylinder and 
perjodicity in the z-direction with period Oh. The _ 
equations of motion are integrated by means of a 
first-order, explicit, symplectic integrator. 

For our example, we simulated the accelerator 
test stand (ATS) RFQ linac at Los Alamos.' This ma- 
chine accelerates a lOO-mA H- beam with a normalized 
transverse emittance of 0.2 mmamrad from 100 keV to 
2 MeV. The space-charge effects in this machine are 
significant. The tunes for particles with small am- 
plitudes are depressed by factors of approximately 0.5. 

BEANTRACE is a PIC code designed for the simula- 
tion of ion optical systems. It can include electric 
and magnetic multipoles, homogeneous and inhomogeneous 
electric and magnetic bending fields, and fringing 
fields. The numerical integration is done with a 
Runge-Kutta method of fourth order. The calculation 
of the space-charge forces is done with a Green's 
function method, which does not require the differen- 
tiation of a potential; however, this method cannot 
account for wall interactions. 

For our BEAMTRACE example, we used a final focus- 
iny system in a heavy ion fusion facility.6 The beam 
consists of 2OgBi at an energy of 10 GeV, a current of 
1250 A, and a transverse phase space of xyaR = 5.6 * 
3.6 ' 22 * 34 cm2mrad2. The focusing is achieved by 
a pair of two quadrupole triplets, which have two 
opposite bending fields in between them to provide 
shielding of the beamline against neutron radiation. 

Computing Moments in the PIC Codes 

Modified versions of the PIC codes were developed 
to compute moments at each time step. In addition to 
the moments of the distribution, we also computed the 
moments on the right-hand side of the moment equations 
that involve forces. Figure 1 shows the moments 
<xx> and <yy> for the Los Alamos ATS RFQ. These 
moments are the squares of the rms beam sizes in the 
x- and y-directions, respectively. The fast oscilla- 
tions in these plots are related to the rf frequency, 
whereas the slow modulations are oscillations at twice 
the tune-depressed betatron frequency. The fact that 
the distribution (and therefore any of its moments) 
contains the betatron frequency means that the beam is 
not exactly matched. Figure 2 shows the moment 
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Fig. 1. The <xx> moment (top) and the <yy> moment 
(bottom) in the Los Alamos ATS RFQ (computed by RFQRZP). 
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Fig. 2. The moment <xvxz> in the ATS RFQ (computed 
by RFQRZP). 

<xvxz>, which is proportional to the correlation 
between the tilt of the ellipse in the x-vx phase- 
space projection and the z-coordinate. Figure 3 shows 
plots of the moments <xx> and <yy> for the final 
focusing system of the heavy ion fusion facility, 
which were computed by BEAMTRACE. 
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Fig. 3. The moments <xx> (top) ano <yy> (bottom) for 
the final focusing system of the heavy ion fusion 
facility (computed by BEAMTRACE). 

PIC Simulation Check Using the Moment Equations 

After the modified PIC code has completed a simu- 
lation, the moments it has saved at every time step 
are analyzed by the CHECK program. CHECK numerically 
differentiates the moments using a five-point formula. 
It also computes the right-hand sides of the moment 
equations by adding up the appropriate moments. Then 
the error, by which we mean the relative difference 
between the left- and right-hand sides of the moment 
equation, is computed for each moment equation. We 
checked the moment equations for various time-step 
sizes. Generally, the error was larger for the higher 
order moments and for the larger step sizes. These 
results are practically independent of the number of 
macroparticles. (We tried from 50 to 5000 particles; 
the examples shown below used 1000 particles.) The 
minimum error we observed was about 10-3 for both the 
RFQRZP and the BEAMTRACE codes. Thus, both codes 
satisfy the moment equations, which are very general 
conditions not explicitly satisfied by the algorithms 
used. This serves as a significant test for the codes. 

Figure 4 plots the RFQRZP simulation error, av- 
eraged over all moments of the given order, as a 
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include at least the linear part of the force, which 
is usually the predominant part. Using the CHECK 
analysis code we determined the error in the right- 
hand sides of the moment equations arising from the 
approximation of the fifth- and sixth-order moments. 
The second-order moment equations had right-hand-sioe 
errors of about 1% on average. The other equations 
had right-hand-side errors of between 2 and 10%. 

function of the number of integration steps per rf 
period. The top curve is the error for moments of 
first order. (The first-order moments would all be 
zero in an ideal simulation. Their small magnitude 
gives rise to large relative errors in the first-order 
moment equations.) The other five curves in the graph 
are the errors for equations of orders two through 
six. Higher order moments have larger errors. 

steps per rf period 

Fig. 4. The error in the moment equations for the 
RFQRZP simulation, averaged over all moments of the 
given order, as a function of steps per rf period. 
Each curve is labeled with the order of the moment 
equation to which it corresponds. 

Moment Simulation Codes 

We have seen that the particle simulation codes 
satisfy the moment equations quite well. Because the 
PIC codes could compute the moments accurately, we 
were able to use them to study the behavior of moment 
simulation codes. This way we can determine some of 
the characteristics of the moment codes even before 
they are written. 

The moment equations are not closed. In the 
presence of nonlinear forces, the computation of the 
temporal derivative of order n requires moments of 
order n+l and higher. To solve the moment equations, 
we must determine sucn higher order moments in terms 
of the lower order moments. There is no unique way to 
approximate the higher order moments. BEDLAM makes 
the approximation that higher order correlations are 
absent, which means that the higher order moments are 
written as products of lower order moments. The 
formula used is exact for Gaussian distributions. 

We used the analysis program CHECK to compute the 
fifth- and sixth-order moments from the particle dis- 
tribution. We also computed these moments from the 
lower order moments accordinq to the approximation 
used in BEDLAM. We found that the average relative 
error in the hiaher order moments was more than 100% 
for-the exampledof the ATS RFQ--it is probably just as 
accurate to neglect the higher order moments in the 
moment code simulations. Thus, the computation of the 
highest order moments (fourth order in BEDLAM) can 
take into account only linear force effects. 

Although the higher order moments are poorly ap- 
proximated, the right-hand sides of the moment equa- 
tions are not necessarily highly inaccurate. Only 
some of the equations include the higher order terms 
that need approximation. For the low-order moment 
equations, the force expansion can be carried to a 
high order, probably including most of the nonlinear 
effects. But even the highest order moment equations 

Conclusion 

Our investigation showed that the PIC codes 
RFQRZP and BEAMTRACE satisfy the moment equations very 
well. Because other PIC codes use quite similar 
algorithms, we do not expect that other PIC codes will 
significantly violate the moment equations. These 
checks were done to sixth order, and our examples in- 
cluded space-charge forces. 

Because the moment equations were well satisfied 
by our particle codes, we can use these particle codes 
to analyze the behavior of moment simulation codes 
like BEDLAM. We were able to determine the accuracy 
of the approximation used in BEDLAM, which was re- 
quired because the moment equations are not closed. 
We found that the approximation of higher order mo- 
ments in terms of lower order moments was inaccurate. 
Setting the higher order moments to zero is prbbably 
just as accurate. Because of the inaccurate t#?rms, 
the right-hand sides of the moments equations had 
errors of between 1 and 10%. This result is inconclu- 
sive. We cannot say whether or not the BEDLAM results 
will be accurate. If we determine a better approxi- 
mation to the moments than is now in BEDLAM, this 
problem will certainly be eliminated. If we cannot 
find a better approximation to the higher moments, and 
if the errors in the moment equations cannot be toler- 
ated, then we will have to take our moment equations 
to higher order to get good results. How high an 
order is required depends on how nonlinear the forces 
are because it is the nonlinearities that couple the 
higher moments to the lower moments. 
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