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Abstract 

Although much work has been devoted recently to 
the numerical calculation of wake potentials, there is 
at present no analytical expression for the wake of a 
point charge crossing a gap in a beam-pipe of finite 
diameter. For a relativistic charge the wake potential 
can be computed in a simple manner from an integral 
over the electric field at the radius of the beam- 
pipe. In the case of a pill-box cavity, our basic 
assumptions are that the resonant frequencies and the 
field at the radius of the beam-pipe are essentially 
the same as in a cavity without beam hole. The 
summation over the infinity of modes can still be 
carried out as far as reflections from the outer 
cavity wall do not contribute; this is sufficient to 
compute the total loss for short bunches. 

Geometry 

Let us consider the gap between a double-step 
cross section change in a round beam-pipe. 

r 

1 Periodic structure repeating the gap g 
with a period d. 

In the literature [1,21, the periodic structure of 
Fig. 1 has been used many times as a simple model for 
numerical computations. In the following, we shall 
neglect the coupling between cells, so that the wake 
potential per cell will be assumed to be the same as 
in the limiting case d = m, i.e. for a single cavity 
formed by a double step in the diameter of the 
beam-pipe. 

Longitudinal wake potential 

The longitudinal wake potential WlI(T) seen 
by a unit test charge which follows an exciting charge 
Q with the same velocity v but at a distance T in 
time is defined by 

w, (T) = - 1. 
Q 

I 

E,,(z,T + ;I dz 

-m 

(1) 

with a Fourier transform 
+m +m 

w,, (WI = 
I 

. z 

w,, CT) e 
-JWT dT = - i i 

E,,(z,w) eJw 7 dz (2) 

-m -co 

The exciting charge traverses the cavity at 
ro,Oo=O whereas the test charge is at r,+. The 
electromagnetic fields in the cavity can be expressed 
as infinite sums [31 over all the solenoidal and 
irrotational modes Empn; for both kinds of modes, 

EZ s Jm (krr)*cos m$*cos(y z) (3) 

where k,b = jmp is the pth root of the J,(x) 
Bessel function. In what follows the subscript Q 
will be used as a short notation for the doublet 
(pen); the angular frequency 01 of a Empn mode 
is given by 

2 j 
lb? 

e 
= c2k2 

e 
with ki = k: + (F) and k r 

= $ (4) 

In the limiting case of infinite Ql and of ultra- 
relativistic particles (v=c), one obtains for a pill- 
box cavity without beam hole: 

io 

W"(W) = - 
c 

'rn J,(j mp >I Jm(jmp t) 
- E 

0 "g j~p[J~(jmp)]2 
cosmQ. 

p=l 

(5) 

L 

*Ix [ 

. g 

23-g eJ!JJ F +l)n e 

-ju g 

J-J 
1 n=-m R 

where cm is Neumann's symbol: Em=1 when m=O, 
cm=2 when m#O. 

Now introduce a beam-pipe of radius "a-. For r<a, 
the integral (2) selects the Fourier component of 
Eli whose phase velocity along t is equal to v. 
Since this component varies radially as I, 
(kr/&), for ultra-relativistic particles the 
integral (2) is equal to 

Im@ 
- . Integral computed on the gap at r=a 
T,(g) 

1 
(6) 

1 when ka << 1 
BY 

The same remark applies to the integral for the 
exciting charge at co. 

The basic assumption is that for rla, Ez of 
each mode is still given by (3), which entails that 
the resonant frequencies are still given by (4). [In 
fact, they are increased by 0 (a3/b2g). 1 With this 
assumption and taking (6) into account, (5) becomes 
for a cavity with beam hole: 

W,,(o) = +,I . 

(7) 

.C...-$ [2-c-ljn .jw f -(-l)n .-jw 21 
n=--m L 

where 

N,, = (y (i)” cos mm (8) 
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The Fourier transform to time domain reads 

Wil CT) = N,, * 
c 
p=l 

+1 

*~(l+6ho)(-l)h H(T-h f)* 

h=-1 

+m 

zcos(nhn) cos iriQ(T-h f, 

II=--m 

(9) 

where H(T) is Heaviside's unit function: H(r)=0 
for T<O, I for 1=0, 1 for T>O. 

Poisson summation formula yields, for any real h: 

+- 

c 

sin(wer) 
cos(nhn).- 

wL 
= f sgn(cr)* 

n=-m 

(10) 
+-7 

*x [ 
H (c+(2n-h)2g2 

I P 
*Jo kr (c~)'-(2n-h)~g' 1 n=-cc 

This relation converts a sum over modes in the 
z-direction into a sum of wave fronts bouncing back 
and forth between the planes z=O and z=g. 

Normal mode description 

Eq. (10) can be used to show that in (91, H(T- 
hg/c) may be replaced by H(T) without changing the 
result, in full agreement with relativistic causality. 

After some manipulation, (9) can be rewritten as 

where 

W,,(T) = N,,H(T) * 
c 

Kmp. COS(U~T) (11) 

L 

Ii 1 2 E 
0 

$ dV 

(12) 

i.e. Kme=(wR/Q)&?k ma of P. Wilson 141; 
here R = "Circuit R" = X "Linac R". 

This is the form which was first proposed by 
P. Wilson and K. Bane [51 in 1977, essentially for 
CT>P. In 1980, using causality arguments, K. Bane 
[6,71 proved this form to stay valid for all T 
under rather general circumstances, in particular for 
a periodic structure. 

Wave front description 

With (lo), (9) can be put into the alternate form 

W,,(T) = N,. 
‘I 

where 

(13) 

0 m 

U(CT) = H(cT). 
c 

(-l)h Fm(xoh,y) +x H(cr-2ng). 

h=-1 n=l 
(14) 

+1 

(l+Aho) Wh Fm(xnh,y) 
h=-1 

and 

F,(w) =g $J$ Jo Cimpx) 
m mP 

with (15) 

y = ;, xnh= ; (CT-hg)*-(2n-h;'g2 

Transverse wake potential 

It is defined by 

+CQ 
+ 
W,(T) = ’ . ; sL(z,T+ z)dz Q J ” 

where 

(16) 

When computed from the sum over all solenoidal and 
irrotational modes Empn of a pill-box cavity without 
beam hole, its Fourier transform compared to (51 is 
found to be 

WI, (a) 
G,(U) = c-grad, - 

jw 
(17) 

which is merely an expression of the Panofsky-Wenzel 
theorem [7,81 

a 
ao zI(T) = gradL “II(T) for a given m (18) 

Let 

m-l 
Nl 

r 
= (?)".m($) cos Ill+ 

0 [ I -sin m$ 

(19) 

For a cavity with beam hole, Tjl(T) is given by 
an expression analogous to (9) where NII is 
replaced by c/a.31, and cos op(T-hg/c) is 
replaced by wfl sin op(T-hg/c). 

Normal mode description 

With lCmk given by (12) we have 

Z,(T) = : $,* H(T) 
c 

sin(wQT) 
Kme (20) 

O!z 
II 
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For the diffracted ray 0, catching up occurs at a 
distance z such that 

Wave front description 

With U(CT) given by (141, 

G,(T) = 
f 

$ r;, + u(CT) (21) 
i ll 0 

The function F,(x,y) For the diffracted ray 1, 

In the following we take x ? 0, 0 < y 2 1. 

From the asymptotic expansion of Bessel functions it 
can be seen that m +1 

- a ; ax m ('*y) = &c c (l+bqo) H(2p+2qy). 
p=o q=-1 

1 

x2-(2p+2qy)Z 2 1 [ .H x2-(2p+2qy)' 
I 

(22) 

1 

+(-ljrn sin(y n) * (2p+2qy)2-x2 I [ 7 -H 

+ higher order terms + regular terms. 

This relation converts a sum F,(x,y) over modes 
in the r-direction into a sum of wave fronts propa- 
gating radially, being diffracted at r=a and reflected 
at r=b. The singularities occur at x=(2p+2qy) or. with 
(151, at 

bxnh = 2 (cT-hg)2-(2n-h) g 2 = 2pb + 2qa 

i.e. 

CT nh 

where p,n = O,l,Z,... q,h = -l,C$+l, 2n-h 5. 0. 

Fig. 2 A few diffracted rays 

The primary wakefields are produced by diffraction 
at the square corners r=a of the cavity; secondary 
wakefields are then produced by reflection of the 
primary diffracted fields at the outer wall r=b, 
and/or subsequent diffraction at the square comers. 
The diffracted fields eventually catch up the test 
particle which is a distance CT behind the exciting 
particle, at a distance z in the beam-pipe. We now 
show that the values (23) of CT for which 
Wll(T) and TjL(T) have singularities are the 
limiting values of CT for which the catching-up 
occurs far (i.e. for z+=) in the beam-pipe. 

CTtZ=Gs 

lim CT=CT~=O; 
z-- 

this case corresponds to 
p=O, q-0. n=O. h=O. 

CT + z = J(2aj2+g2 + Ja2t(z-g)2 

lim CT = cfl = w - g; this case corresponds to 
z-+-J p=O. q=l, n=O, h=-1. 

For the diffracted ray 2, 

CT+Z = 2a + &G7 

lim CT = CT~ = 2a; 
z+- 

For the diffracted ray 3, 

this case corresponds to 
p=O, q=l, n=O, h=O. 

CT+Z = /(2b-2aJ2+g2 + Ja't(z-g)a 

lim CT=CT~ = /(2b-2a)'tga-g; this case corresponds to 
z- p=l. q=-1, n=O. h=-1. 

If x+2y<2 (i.e. T<T2) I the series for F,(x,Y) 
can be summed analytically. The result is 

1-y 
2m 

Fm(x,y) = -g- - fmQ (24) 

the first term being (-log y) when m=O; 

8 =arc sin u 

f,(u) = f sin(2m8) ------.d sin8 + 2m sin e 
6 mo'H(u-1)40g u (25) 

0 

where arc sin u = r/2 if u 2 1; m=0,1,2,... 

Case CT < min (CT,, 2g) 

Then (14) can be expressed analytically and reduces to 

U(CT) = H(cT), L 
[( 

Gs) _ fm(2L) (26) 
m 2a 1 

The condition NT2 means that T is so short 
that waves reflected on r=b have not enough time to 
catch up the test particle; this condition is met for 
all particles within bunches shorter than CT,. For 
T<T,, U(CT) cannot depend on b; this is indeed 
the case for the expression (26). 

From (25). 

Gz+ . . . U(cr) = H(cT) * Tla when CT+O (27) 

Therefore, from (13) and (21): 
E 

when CT --> 0 (28) 
E 

=JT) = &H(cT) E s; a2 
0 

When (26) is used in (13) or in (21), there results a 
simple analytical express ion 
GLjL(T) when T<T2. This exprefsO:ion ""~~hibi~~ 



the same general behaviour as the wake potentials 
obtained from (11) or (20) by summing many modes and 
computing the tai.1 of the series with the optical 
resonator model; the main difference is the behaviour 
for CT -) 0, but this difference would appear only in 
extremely short bunches. 

Impedance function Z(o)=Zs(w)+jZ,(w) 

The impedance function is identical 
or t;,(u) except for the normalization 

"",,"f;~:' 

NII or ZLj,/a are replaced by aWzm. From (28): 
the asymptotic behaviour of the averaged Z,,(w) 
at high frequencies is 1 - 

E 
Z,(w) = N,;--J----- 

312 
E c* 0 (29) 

for k -@$> 1 

In the optical resonator model [91, z,, (0) 
behaves ultimately as o-da, which corresponds to 

finite w,,(o). Nevertheless, the w-x law fits 
zather well some results computed with BCI [lo]. From 
(ll), m 

If co << CT1, 2k ,, =N,,2 [&F - 11 (36 
0 

If woo > 1, 7h 
2 CT2 "N,,wi L e-O" (37 

dr = N,,A where L is given by (32). 

-m Transverse loss parameter 

I 

(30) 

For o(<wo (the lowest resonant frequency of the 
cavity), 

w,, (w) FJ N,,.jwL where L = c% (31) 

Using (12) one obtains 

L=!LE b.$uth(j LL) (32) 
71 m 

p=l jmp” cJ61(jmp)] mp 2b 

!J 
If +i, L iJ >n E,g.F"(O,;) = 2 Emg' 

for m=O' (33) 

for m=l,Z,... 

g 
u 

If->l,LZZf 
b ll m b-f(;) 

(34) 

; f(y) = 
2Y (- i)m -----+'a -y 2m 

(2m):...1 2 m m! 
+O(y 

2m+2 
1 Y<<l 

a = 0 0.775238, am ; 1 for m=1,2,... 

Y‘l 

r?_oss parameter for a Gaussian bunch 
with an rms length cd 

Longitudinal loss parameter T 

2 

J 
-.I-- 

2k,, = d7.e 4a2 (35 
0 

For short bunches, when co < min (cT~, 2g) 
one can use (26) in (13) in order to compute (35) 
There is no simple analytical expression for (35) bu 

1 

.t 
this integral is easily computed numerically. In most 
cases which were compared with results of TBCI [ll], 
(35) gave agreement to within 20-304.. Obviously, (26) 
only involves the dimensions a and g, and therefore it 
could not represent the influence of small variations 
in the geometry of the gap. Nevertheless, the results 
obtained from the simple expression (26) are much 
better than "order of magnitude" estimates. 

1 

1 

It is given by an expression analogous to (351, 
and the same remarks apply. 

If Cd << CTl, 
2i: l " ii, 4 =$/s - 1] (38) 

E IT 0 

If woo z 1, 2; Ji L.c 
I47 ao 

where L is given by (32). 

As a function of o, k, varies as rlg.ca/a2 
for small o and as o-i for large o. 
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