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Summary 

In conventional theory, steering or bending an 
ion beam of high energy and high current requires very 
intense magnetic fields, which are both uneconomical 
and bulky. This problem is even more severe for 
singly charged ion beam with very high atomic number, 
which require larqe magnetic field enerav both to bend 
and also‘to focus-the beam against its &lf electric 
field. In this paper we present a new and simple 
technique, which will substantially alleviate these 
problems. 

Introduction 

We consider here the possibility of mixing the 
ion beam with an electron beam moving at the same 
speed, but with a much higher number density. We 
require 

m, N- 

where N and N. are line number densities of electrons 
and ion:, and h and m. are electron and ion rest 
mass, respectivgly. The transverse applied magnetic 
field in this case is required only to bend the 
electron beam, which in turn traps the ion beam by its 
own attractive electrostatic potential. Therefore the 
center of mass radius of curvature and applied 
magnetic field energy can be reduced substantially. 
Although these two beam axes are slightly separated 
due to polarizing effect of the magnetic field on 
their opposite charge, under certain conditions they 
will however remain together as a stable 
configuration. The required magnetic field strength 
and field energy for bending the comoving beams are 

reduced by the ratios Ni/Ne and (Ni/Ne)', 

respectively, from their values for bending the ion 
beam alone. This substantial savings in bending field 
energy coupled with similar reductions in the field 
energy for beam focussing (see below) make this 
technique especially attractive. 

It is well known that a non-neutral particle beam 
will rapidly expand and be lost due to its self 
electrostatic field, if external focussing force is 
not being applied. Several techniques have been 
developed in order to accomplish this objective. 
These techniques include an externally applied 
magnetic field along the beam direction of 
propagation'; discrete magnetic quadrupole lenses2; 
and continuous magnetic quadrupole field generated by 
four helically wound conducting wires of alternatively 
opposing current,3 superimposed on an axial magnetic 
field. In principle, all of these techniques can be 
used to confine an ion beam, but in general they are 
more efficient in confining electrons due to the light 
electron mass. In fact, for comoving beams where 
relation (1) holds, the magnetic field energy needed 
for confinement is reduced by the ratio m,N,/miNi from 
its value in the absence of electrons. 

Thus in this paper we will explore the 
possibility of bending the ion beam by mixing it with 
a comoving electron beam. 

Analysis 

To investigate the properties of comoving 
electron and ion beams in the presence of an external 
transverse magnetic field, B,, perpendicular to the 

propagation direction of the beams, we treat the 
electron and ion beams as rigid body, i.e. the beam 
maintains fixed density and current profiles with 
respect to its axes. This is a reasonable assumption, 
since the self fields do not directly affect the 
lateral displacement of the beams axes. Therefore, 
the equations of motions for lateral displacements of 
the ion and electron beam axes (Xi and xe, 
respectively) relative to their original propagation 
direction can be expressed as: 

d2xi ZeBzP 
--+ F 

z - Ymi 
.(xe - xi )/ymiNi (2) ei 

d2xe _ eBzB 
7 - - yme + Fie(Xi - xe)hmeNe 

where 2 is the charged state of ions, y is the 

relativistic factor, p = 5, and F 
aiX) 

is the 

transverse (electric and magnetic) static force 
exerted on a column of species 6 by a column of 
species a. 

This force can be expressed as: 

F a6 = e6 1 n6 [Ea - (@“)I, dS6 

(3) 

= f 1 noEi dSg, 

where n is the number density, E" and B" are self 
electric and magnetic field of the species a, the 
subscript x denotes the direction of the force, and 
the integral is to be carried out over the cross 
section of column of species 6. 

We assume both ion and electron beams possess 
Gaussian profile, i.e. 

N 
n,(r) = --$ e 

-r2/R2 a 
, 

a 

(4) 

where R is the beam radius. Then after some simple 
geometric calculations, we can write Equation (3) as 
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Fad(x) = 
2eae6NaNg -x2/R: - 

22 e 
XRdY 

lo dr 

2rxcos.0 

-r2/R2 -r2/R2 2x R2 
Ce 6(1 -e “11 e ’ cosede] 

0 

2i%eae6NaN6 
I 

R&Y2 
Ce-Z11,2(z 

where z = x2/2Ri, q = R; 

modified Bessel function 
the identity 

(5) 

zrl)l 

(Rz + Rz), and Il,2 is 

of order one half. By using 

I~,~(z) = (eZ - e-z)~&~ 

we can simplify Faa(x) to: 

Fas(x) = 7 (1 - e 
-x'/(R; + R;) 

1. (7) 
2eae6NaN6 

The equation of motion of the relative separation 
between the two beam axes (ri - r,) can be obtained 

from Equation (2). Using the force form of Equation 
(7), we can write this equation of motion as 

2 
2=A - D i [I - esx2], 

where we now define x = lxi - x,l/(R: + Rz)l'*, 

and the constant A and D are given by 

A= 
eBzB 

w,(R: + R%) 
l/2 

2N,Ze2 

(9) 

D= 1 
Y me(Ri + Rz)’ 

In obtaining Equation (8), the constraints in Equation 
(1) have been applied. 

Integrating Equation (8) over x with the initial 

condition 9 = 0 at x = 0, we obtain 
dt 

:(g, 
2 

=,[A-$ G(x)], 
where 

G(x) =i [nn(x2) + E1(x2) + 0.577211. (11) 

and El is the exponential integral. Equation (10) 
denotes the kinetic energy of electron beam in the 
frame of reference moving with the ion beam. 

We are mainly interested in the maximum 
separation of the two beams, x,, which occurs when 
dx/dt = 0, or 

l/2 

G(x,) = 2 = 
v2PBZiR; + (1 

. (12) 
D ZeNi 

G(x) decreases away from its peak value 
of = 1.0 at x = 2.1, and has the following asymtotic 
form 

X , x << 1 
G(x) = (13) 

$ [ln(x2) + 0.5773, x 1) 1. 

Therefore a pair of solutions to Eq. (12) occur for 
2A/D < 1.0, one with x < 2.1 and one with x > 2.1. 
Only the solution with x < 2.1 is physically 
obtainable and stable. Assuming small relative 
displacement, x, << 1, Eq. (12) simplifies to 

Y’BB~(R; + Rz) l/2 

Ni = Zex, . (14) 

Equation (14) therefore uniquely determines the lower 
limit on the ion line density, if we do not want the 
relative separation of the two beam axes to exceed 

'rn* Note that Eq. (14) applies only when Nimi >> N,m, 

(see Eq. (1)). Otherwise, Ni should be replaced by Ni 

+ meNe/mi. 

In order to fully characterize the behavior of 
the beams motion, we define the center of mass of the 
two beams as 

(15) 

This equation together with Equation (2) give us the 
equation of motion for the center of mass 

d2Xc _ eBzB 

z - Y(Nimi + N m e eJ 
(ZNi - Ne) 

(16) 
eBzsN 

z -2, 
YNi mi 

where we have used the constraints in Eq. (1). 
Since l3 and y remain unchanged, Eq. (16) implies that 
the acceleration of the center of mass is constant and 
perpendicular to the direction of motion. Thus the 
center of mass motion bends with radius of 
curvature p 

C’ 

YBmiC 2 N. 

PC= F$’ I I Z e 
(17) 

Equations (14) and (17) constitute the main 
results of this paper, and can be used together with 
the constraints in Eq. (1) to calculate the design 
parameters for various applications, when steering or 
bending a high energy, high current ion beam is 
necessary. However, in arriving at these results, we 
have assumed the beams to be rigid, i.e. neglecting 
the effects of self fields. While the ion beam is 
trapped and confined by the electron beam space charge 
potential (N,/N~ >> l), external field is necessary to 

confine the electron beam minor cross section from 
self expansion. Which is especially detrimental for 
applications, where it is necessary to have the two 
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beams remain together as long as possible4. Part of 
the reason is obvious from Eq.y(14), in which the 

critical current scale as R: + A:. To confine the 

electron beam minor cross section from self expansion, 
we can adapt the techniques used in various cyclic 
accelerators, i.e. magnetic quadrupole field focussing 
as in the 

9 
uadrupole accelerator2 or in the 

stel latron , or an externally applied magnetic field 
along the direction of propagation as in the modified 
betatron>. 

In this paper, we consider the use of an applied 
magnetic field along the trajectory of the center of 
mass, which can be readily calculated from Eq. (16), 
in order to focus the electron beam. The effect of 
this axial magnetic field on the center of mass 
trajectory is negligible, provided the condition 
x, << 1 is satisfied. At any rate, any possible 

electron drifts due to the bending magnetic field 
error or the presence of the axial magnetic field can 
be effectively prevented by introducing a strong 
focussing field, such as the continuous quadrupole 
field in the Stellatron.3 A charged particle beam can 
be transported along an axial magnetic field, if the 
following condition is satisfied 

where n is the beam density and Bo is the axial 

magnetic field strength. It is obvious from the above 
equation that substantial solenoidal magnetic field 
energy can be saved by employing the comoving electron 
beam, due to the fact that Nimi >> Neme. The axial 

magnetic field Be can be obtained by solenoidal 

winding around the center of mass trajectory. 

In order to bend the beam, a uniform bending 
magnetic field must be applied transversly to the 
plane of the beam propagation; this can be achieved 
either by conventional permanent dipole magnets or by 
a new winding technique we recently developed6. In 
this technique, parallel conducting wires are formed 
into a tube (the tube does not have to be straight), 
so that the cross section of this tube is as shown in 
Figure 1. In Cartesian coordinates, when the wires 
are packed close to one another and the current in 
each wire are given by: 

1(2,x) = Imax x/a. 

where a is the radius of the cross section of the 
tube, we find that the magnetic field inside the tube 
can be expressed as 

S(z,x) = * ;. 

Since this field is uniform, it can effectively be 
used as a bending field for charged particle beams. 

In order to illustrate some of the points 
discussed here, we consider the bending of a proton 
beam with a current of 200 Ampere, energy of 20 MeV 
and Ri = 1 cm, by employing a comoving electron with a 
current of 5kA and R, = 5 cm. If we demand xm = 0.1, 

then from Eq. (14) the bending magnetic field must be 
8, = 16.2 Gauss. Thus the radius of curvature is 

I 

z 

=I J.! 
max a 
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Figure 1. Cross sectional view of a tube 
to create uniform bending magnetic 
field. 

PC 
= 10.6 meters from Eq. (17). The axial field 

strength required is Be = 1.3 kG from Eq. (18). For 

the same configuration without the presence of the 
electron beam, the magnetic field required for bending 
and focussing the ion beam would be 405 Gauss and 5.6 
Telsa, respectively. Obviously, considerable magnetic 
energy must be expended to confine and to bend an ion 
beam without the presence of the electron beam. 

Conclusion 

We have presented here a new technique to bend 
and confine a high energy and high current ion beam. 
It should be noted, however, that the feasibility and 
usefulness of this technique depends on the objectives 
one wants to accomplish and the availability of 
technology. For certain applications, electron 
cooling of high current ion beam4, for example, this 
technique is very advantageous in reducing the 
physical space required. 
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