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Abstract 

A simple set of formulas is derived which relate 
emittance, line charge density, matched maximum and 
average envelope radii, occupancy factors, and the (space 
charge) depressed and vacuum values of tune. This 
formulation is an improvement onextLzt smooth ,limit 
approximation; deviations from (numerically 
determined) relations are on the order of fZ%, while the 
smooth limit values are in error by up to &Xl%. This 
transport formalism is used to determine the limits of 
transportable line charge density in an electrostatic 
quadrupole array, with specific application to the low 
energy portion of the High Temperature Experiment of 
Heavy Ion Fusion Accelerator Research. The line charge 
density limit is found to be essentially proportional to the 
voltage on the pole faces and the fraction of occupied 
aperture area. A finite injection energy ($2 MeV) is 
required to realize this limit, independent of particle mass. 

Introduction 

For the design of the Multiple Beam Experiment 
(MBE-4) [l], the High Temperature Experiment (HTE) [Z] 
and a heavy ion ICF driver it is not only necessary to 
determine the matched beam envelope functions for 
particular parameters, but also to provide accurate scale 
relations, particularly for those parameters relating to 
physically limiting features of the transport lattice. In 
general, an exact evaluation of the envelope functions may 
be obtained from the solution of the nonlinear envelope 
equation (including space charge) if the Kapchinski- 
Vladimirskij distribution [3] in transverse phase space is 
assumed. This has been found to be an adequate theoretical 
basis for design of a transport system, but it is too 
cumbersome for parametric display and scaling. The 
well-known continuous limit formulation [4] does yield 
useful relations between emittance, line charge density and 
mean radius but they are inaccurate, contain no detail of 
the focal lenses, and make no prediction of the maximum 
beam radius. These deficiencies of the continuous limit 
formulas are remedied in an improved approximate 
calculation described here, while retaining the desired 
simplicity of form and explicit scaling of the continuous 
limit. 

Method of Calculation 

The improved approximation of the envelope 
functions is based on an evaluation of the transfer matrix 
TM1 for a full lattice period of length 2L. This matrix is 
the product of the simple matrices which represent lenses 
and drifts in the absence of space charge forces. Additional 
defocussing (thin) lenses representing the effect of space 
charge are placed in the middle of the drifts. At these 
mid-points the space charge force is close to its average for 
the full lattice period and can be evaluated using the 
matched envelope radius (a) at the midpoints, which is the 
same for x and y. Thus there is a kick representing the 
charge effect for a half period: 

where Q is a dimensionless measure of the particle line 
charge )co: 

Q=$$-&$~~)W . (2) 

Standard relations between envelope functions and 
elements of [M] are employed [5]. The cosines of the 
normal and depressed tunes (o. and 0) are determined from 
the trace of [Ml, and the ratio Z2 (sin a)/~, where TW 
is unnormalized emittance, is given by the component Ml2. 
The maximum radius (a,,,) appears at the center of a focal 
quadrupole and is determined using the components mI 1 
and ml2 from the transfer matrix [m] evaluated between 
the lens center and drift center. In the consideration of 
finite lens length (nL) and symmetric treatment of charge 
this formulation improves on the similar results derived- by 
Keefe [6]. The four derived relations essentially relate a, 

am* a and a0 to the fundamental quantities rl, L, 
c, Q, and quadrupole strength K: 

K = ]B’ or El/vi 
Lb1 + F (NR,ES) . (3) 

In order to simplify the derived relations all 
trigonometric functions are expanded in the dimensionless 
lens strength (9 fl L), keeping only lowest order 
non-trivial contributions to the envelope functions. A 
highly accurate value of a0 (i, 1% error) and reasonably 
accurate expressions for the other quantities (<cS% error) 
are thereby obtained. To improve accuracy two further 
steps are taken. First, in the evaluation of [ml, a space 
charge kick of one quarter the magnitude of Eq. (1) is 
inserted at both the lens center and drift center, this being 
a more symmetric application. Second, the coefficient of 
$ in the formula for cos Q [Eq. (5)] is corrected (from l/8 
to l/6) to agree with the exact envelope results which can 
be derived in the limit E + 0, ti + 0. This is a natural 
modification of the basic calculation since the use of thin 
lenses to represent charge inevitably lead to errors in terms 
of second order in line charge (0: r). 

Summarv of Relations 

The four lattice and envelope relations we have 
derived are conveniently written as follows: 

cos (I 
0 

= , _ + K2 L4 
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a=- a 

2cL ar ( cos 0 - cos a0 , ) (6) 
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Here we have defined 

(8) fi L = 1 .5661 

The predictions of these formulas are compared with exact 
results in Table 1. 

Typically, in using these relations a set of 
constraints is specified. For example the ratio of maximum 
beam radius to aperture radius (am/b) and ratio of half 
period to aperture (L/b) may be bounded. For the 
example given below we also specify a maximum voltage on 
pole faces 

b(b) = $ , (9) 

which must be less than or on the order of 50 kV to avoid 
electrical breakdown. 

Space Charqe L-imit 

Equations (4)-(7) are readily solved for r with 
u = 0, c = 0, and a given value of ao. For the 
conservative value ao = 60”, which avoids space charge 
induced instabilities [7], and II = l/2 we find 

i- = .516 , (loa) 

a,/: = 1.25 , (lob) 

KL2 = 2.45 . (‘Oc) 

Using these values, the particle energy and particle line 
charge may be written 

TABLE 1. Comparison of approximate and exact relations. 
The rhs of Eqs. (4)-(7) is computed for a range of 
depressed tunes. The value paired immediately 
below is the exact value. For this study we have 
set n = l/2 and ho = 60°, 90°. The values of 
0 given in column 1 are exact (numerical), 
corresponding to the given values of r . 

Given 
Parameters 

r = .ooooo .oooo .8875 1.274 
(u = 60") .oooo .8921 1.269 

r = .43003 .4110 1 .024 1.250 
(a = 24") .4135 1.034 1 .253 

r = .50741 
(a = 6") 

Jk L = 1.8636 

.4912 

.4945 
1.049 
1 .061 
--_ 

1.246 
1.250 

JO.297 
10.000 

r = .oooo .oooo .77500 1.443 
(a = 900) .oooo .7841 1.430 

r = .57337 .4939 .9478 1.388 
(a = 60") .5000 .9661 1.395 

r = 1 .0323 ,9606 1.086 1.355 
(u = 12") .9781 1.125 1.371 

uO 

50.085 
jO.000 

cos u 

- cos u 
0 

T = (.408) c/?)2 Zeb(b) (ev) 

i2 sin 0 
2cL 

-- 

am/a 

?,. : 1.85x10-" T 
Z2e 

(C/m) (12) 

If we allow as a maximum quadrupole voltage 6(b) = 50 kV 
and aperture fill factor am/b = .5, then 
ho = .0943 PC/m. More generally 

MAXIMUM TRANSPORTABLE CHARGE 
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Fig. 1. Dependence of the maximum transportable charge per meter on beam energy for various lattice tunes ho (in 
degrees) and quadrupole voltages B (in kV) for II = l/2. L/b = 10, and am/b = .5. 
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Xo51.094;d/m) k2A$L. i 1 (13) 

The particle energy required to realize this limit is 

(14) 

Since aspect ratio L/b conservatively is taken greater than 
-10 to avoid field nonlinearities, an injection energy of at 
least 2 MeV is required to realize the space charge limit of 
Eq. (13). Higher injection energy requires increased L/b to 
avoid a reduction of ao.. Lower injection energy requires 
reduced 6(b) and A, IS reduced from the given limit. 
Specific examples are” the HTE injection scheme, which 
approaches the space charge limit (T = 2 HeV, 
xg = .075 PC/m), and the MBE-4 injector which operates 
with Ao, 0(b), and T about one order of magnitude 
lower. The relationship of these quantities is displayed in 
Fig. 1. 

The authors would like to acknowledge the 
considerabie aid given by Dr. Lloyd Smith in arriving at 
accurate envelope functions. 
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