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Abstract 

It is well known that during the acceleration of 
hadrons in a storage ring, the beam always goes above 
the microwave instability threshold near the transition 
energy yt. The reason is that the longitudinal revolu- 
tion frequency spread of the,beam which otherwise pro- 
vides Landau damping vanishes at the transition energy. 
The amount of the beam dilution near the transition 
energy is determined by rth, the length of time when the 
beam stays unstable, and the growth rate of the instabil- 
ity. It is pointed out in this paper that ?th is propor- 
tional to the fourth power of yt, and thus the choice of 
a large it is not desirable from this point of view. 
An analysis is also given of the microwave instability 
induced beam dilution for the proposed Relativistic 
Heavy Ion Collider at BNL. 

Introduction 

In the design of a large accelerator, the microwave 
instability is an important consideration at the transi- 
tion energy, where the Landau damping becomes ineffec- 
tive. Unfortunately, the heavy ions (from deuteron up 
to gold or uranium) have to be accelerated through the 
transition energy, 

7 
t, of the proposed Relativistic 

Heavy Ion Collider RHIC) at Brookhaven National Labora- 
tory. The heavy ion beam has a large q2/A ratio, where 
q and A are the charge and mass number of the heavy ions 
respectively, therefore the intrabeam scattering becomes 
very important. As a consequence, higher focusing 
strength is needed for a smaller beam size, and this 
gives rise to a larger yt. Thus from the point of view 
of the intrabeam Coulomb scattering larger yt is prefer- 
able. 

On the other hand, large yt causes another problem, 
the growth rate of the microwave instability across the 
transition energy increases rapidlx2with yt, since the 
duration of time when n, n = Yt y is so small that 
the beam stay under the microwave threshold is roughly 
proportional to y$/a2, where "a" is the bunch area. A 
compromise between microwave instability and intrabeam 
scattering has to be considered in the choice of yt. 

In this paper, we intended to study the systematics 
of the total growth of the microwave instability across 
the transition energy. For an allowable total growth, 
we can set a limit on the impedance of the ring, the num- 
ber of particles per bunch, the phase space area before 
the transition, and/or the acceleration rate in the de- 
sign requirement. In the following we review the longi- 
tudinal phase space equation of motion and derive the 
Liouville-Poincare invariant. Then we apply the disper- 
sion integral to calculate the growth rate of the micro- 
wave instabilitv and the total integrated growth. The 
conclusion is given in the end. 

Invariant of the Longitudinal Phase 
Space at the Transition?=- 

The equation of synchrotron motion for longitudinsl 
phase space is given by 
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where w is the revolution frequency; SC, the speed 
of the garticles; E, the energy of the particle; h, the 
harmonic number; qe, the charge of particles; V, the 
magnitude of r.f. voltage and c) = $-$s; and W = hElo,, 
are conjugate variables of the synchrotron motion. 
Linearizing Eq. (21, we obtain 
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Now let us assume that the particles are acceler- 
ated uniformly through the transition energy, i.e. y(t) 
is a linear function of t as . 

y(t) = Y, + ;t (5) 
. 

with constant y. Then n(t) at the transition region 
may be written as 

q(t) = + - 5 ^I CT t . 

yt y yt 
(6) 

llsing the approximations of Eqs. (5) and (6), we obtain 

$t) = -LLl- 
T3 

where 

T = 2 2 (g&g) lf3* 
(7) 

Defining x = jt I/T and 

x 
y = .r dx'cx' 

0 

13 = ; .3/Z , 

equation (3) becomes, 

with 

(8) 

Equation (8) is the Bessel equation of order 2/3. Thus 
the solution of 0 and W are given by linear combination 
of J2/3(y) and N2,3(y), i.e. 
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The invariant phase space curve1 can easily be derived 
from eqs. (9) and (10) as, 
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with 

D= 
J2/3N5/3 - J5/3N2/3 ’ 

The ellipse defined by eq. (11) has a conserved 
space area, a. Using the asympototic expansion 
se1 and Newmann functions, we obtain at large y 
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where the phase space area, a, has 
the constant b 

been used to replace 

(14) 

To simplify the calculation, we can use the Gaussian 
bunch. The particle density distribution in the bunch 
is given by 
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The factors 3 above come about because we choose the 
bunch area "a" to contain 95% of the beam particles. 
The factors in eq. (15), G(9) and gn(w), are normalized 
separately. 

Growth Rate and the Total Growth of the Microwave In- 
stability at Transition Region 

Without the energy spread, the longitudinal coher- 
ent frequency shift ME, kC? = fi - II'~'~, is given by 
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where n is the mode number, I, is the current of the 
beam, and 2 is the total impedence of the chamber of 
accelerator. Note here that when Im(m52) > 0, the beam 
suffers microwave instability. In the presence of a 
frequency spread described by a normalized frequency 
distribution F(u), the coherent frequency, 0, of the 
collective mode is given by the solution of the disper- 
sion relation* 

with 

The revolution 
W by 

AbJ = 

where J is the 
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frequency, fti, w = w. + Anti is related to 

2 2 
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Jacobian of the transformation. Using 
the density distribution of Section 2, we obtain 
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The dispersion 
coherent shift 

(19) 
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= 42% . (24) 

integral is then used to solve 662 of the 
in the beam. Figure 1 shows Im(6R) as a 
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function of time around the transition energy for gold 
ion. At time t = 0, the particle crosses the transition 
energy at Y, = 26.4. The parameters are 

h = 342 

v = 1.2 Mv 

Fls = 2.268O 

. 
y = 1.6/set 

Nb 
= 1.2 * 10' particles . 

h=6x57 
v= 1.2 MV 
+=2.268 
p= I.G/sec 1 
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Fig. 1. Microwave growth rate at the transition region. 

The initial phase space area a = .3 eV set, .4 eV set, 
and .6 eV set are shown Ear comparison. The growth rate 
for a = .3 eV set without Landau damping is also plotted 
for comparison. The impedance is assumed to be Z/n = 5 
+ i< space charge ohms. We observe that the effect of 
Landau damping is quite important. The total growth of 
the amplitude is given by 
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Figure 2 shows the total growth as a function of 
IZ/nlNb. We observe that the total growth is very sensi- 
tive to the initial phase space area. We also show the 
total growth with Y = 3.2/set of r.f. system. The de- 
pendence is less sensitive in this respect. The calcula- 
tion shows a universal dependence of the growth exponent 
g =s 

S = (f Nbq2,A)' , (27) 

when other ion species are considered. 

Conclusion 

We have studied the growth of microwave instability 
for a bunched beam. The width of W distribution is pro- 
portional to /a/y2 (see eqs. 13 and Zl), where a is 
the phase space a!ea and y 

5 
is the transition gamma. 

For larger y,, the Landau amping becomes less effec- 
tive. 

0=0.3 eV set 

Fig. 2. Total growth of microwave amplitude. 

tematic de endance 
IZ/n(*Nb*q /A. E 

of the integrated growth on 
Note also that the total growth of the 

bunch area decreases faster than l/a2 with increasing a. 

Acknowledgement 

. We thank E.D. Courant for many enlightening 
discussions. 

References 

1. J.C. Herrera, Particle Accelerators, 2, 49 (1972). 

2. J.M. Wang and C. Pellegrini, Proc. of the 11th Int. 
Conference on High Energy Act., Geneva, Switzerland, 
p. 554 (1980). 

We investigated the dependence of total integrated 
growth on the impendence, charges and masses of parti- 
cles and number of particles per bunch. We found a sys- 


