© 1985 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Nuclear Science, Vol. NS-32, No. 5, October 1985

SPECTROSCOPIC MEASUREMENTS ON AN H- ION SOURCE DISCHARGE*

Roderich Keller[†] and H. Vernon Smith, Jr., AT-2, MS H818 Los Alamos National Laboratory, Los Alamos, NM 87545 USA

ĩ

Summary

Spectral emission lines from an H⁻ Penning surfaceplasma source (SPS), the 4X source, are examined in the visible and near ultraviolet. Electron distribution temperatures are deduced from integral line-strength measurements. These temperatures are surprisingly low, about 0.5 eV. Electron density values of about 1.5 x 10¹⁴ cm⁻³ and H-atom energies between 2 and 2.6 eV are determined from the measured Balmer-line profiles. Assuming the H⁻ energy is identical to the H-atom energy, an emittance limit of 0.006 $\pi \cdot cm \cdot mrad$ is deduced for this source with a 5.4-mm aperture.

Introduction

The SPS provides bright H⁻ beams for accelerator applications.¹ Not much is known about the plasma parameters of the source, but such information may prove quite valuable in theoretical modeling and in understanding the performance limits. The primary aim of our experiment is to use quantitative plasma spectroscopy to determine the transverse H^- ion energy that, along with the aperture size, sets a lower limit for the source emittance. Our experimental techniques and interpretation of the measurements follow standard procedures described in textbooks.^{2,3} Hydrogen-atom energies are determined from the Doppler broadening of the ${\rm H}_{\alpha}$ linewidth, and electron densities from the Stark broadening of the ${\rm H}_\beta$ and ${\rm H}_\delta$ linewidths. Electron distribution temperatures are calculated from the intensity ratios of molybdenum, cesium, and hydrogen lines. A more detailed description of the experimental apparatus, measured data, and derived quantities is given elsewhere.4

Experimental Apparatus and Method

The 4X source is a Penning SPS, described in detail elsewhere.⁵ Figure 1 shows the experimental setup. The plasma column is observed side-on through the 4.4-mm-diam ion extraction aperture. The emitted light passes through a quartz vacuum window and is imaged with slight demagnification onto the monochromator entrance slit. The lens transmission is sufficient for wavelengths down to 350 nm. The monochromator slits are perpendicular to the source magnetic field axis. The sensitivity of the whole system, including the photomultiplier, is calibrated by measuring the known spectral emission of a 100-W tungsten/halogen lamp.

Line profiles are measured at $20-\mu m$ slit widths where the measured instrument profile is Gaussian, with a full half-width of 0.011 nm. All measurements are time-resolved but are averaged over 10-20 discharge pulses, and high-frequency oscillations are smoothed out. Interestingly enough, even for quiescent discharge conditions (H⁻ current-signal noise level about 1% for 50-MHz bandwidth), the integral lineintensity signals show strong oscillations: $\pm 20\%$ for H_a, $\pm 70\%$ for Cs II, and $\pm 10\%$ for Mo I at 1-MHz bandwidth (the Cs II signal is shown in Fig. 2b).

For all examined discharge conditions, the ion current delivered by the source is measured with a Faraday cup inserted 5 cm from the source. During the spectroscopic measurements, the cup is removed and no

Figure 1. Upper: experimental arrangement of the 4X source and the 1-m monochromator on the ion source test stand (not to scale). The distance from the emission aperture to the lens is 67 cm; to the monochromator, 107 cm. Lower: horizontal (top) and vertical (side) sections of the 4X source plasma volume. Only a small portion (cross-hatched area) of the arc region is examined with the monochromator.

Figure 2. Oscillograms for Condition III, of (a) discharge voltage V_D (upper) and current I_D (lower); and (b) the photomultiplier tube current IpWT for the Cs II line at 460.38 nm. The oscilloscope bandwidth is 50 MHz for V_D and 1 MHz for the other signals.

extraction voltage is applied. Four different discharge conditions are investigated: a noisy mode (I) with 300 V and 80 A, yielding 90 mA of H⁻ ions at 29 kV, with 1.5-ms pulse width at 5-Hz repetition rate; a low-voltage mode (II) with 130 V, 180 A, and 1.2 ms, yielding 100 mA of H⁻ at 29 kV; a quiescent mode (III) with 480 V, 55 A, 1.2 ms, and 60 mA of H⁻ at 21 kV; and, last, a dc mode (IV) at much reduced instantane-ous power with 270 V and 1.06 A, yielding about 1 mA of H⁻ ion current at 5 kV.

^{*}This work was supported by the US Air Force Office of Scientific Research.

[†]Visiting Scientist from GSI, Darmstadt, West Germany.

Calculation of Plasma Parameters

For lines of one ionization state of an element, the electron temperature of the plasma is determined from the intensity ratio by using the formula kT_e = $(E_j-E_j)/ln \; [(A_jg_j\lambda_iI_iK_i)/(A_ig_i\lambda_jI_jK_j)]$, with j the line emitted from an upper level of higher excitation energy E than line i; A the transition probabilities; g the statistical weights; λ the wavelengths; I the recorded integral intensities; and K the calibration factors. A true electron temperature is represented by kT_e only in the case of local thermodynamical equilibrium (LTE). If LTE cannot be verified, there may be different kT_e values, depending on the energy values of the levels involved, and kT_e then means the distribution temperature.

The emission lines used in deriving the source plasma parameters are listed in Table I. Wavelengths, statistical weights, and level energies are taken from the tables in Refs. 6 and 7. Transition probabilities are found in a recent review⁹ and monographs for molybdenum⁹ and for cesium.¹⁰ No transition probabilities for singly ionized cesium are available; therefore, lifetime data¹¹ of excited Cs II levels are used, and the transition probabilities of the Cs ion lines are assumed to be one-tenth of the inverse lifetimes of the radiating levels.

TABLE I DATA OF SPECTRAL LINES USED TO DERIVE PLASMA PARAMETERS

		<u>λ(nm)</u>	E(eV)	A•g(10 ⁸ s ⁻¹)
H~		656.28	12.09	4.19
НĞ		486.13	12.75	1.43
Ηŗ		410.17	13.22	0.389
Cš	I	455.53	2.72	0.0859
Cs	Ι	672.33	3.23	0.273
Cs	Ι	728.00	3.51	0.491
Cs	ΙI	460.38	16.01	6.6 ^a
Cs	ΙI	522.70	15.68	2.2ª
Мо	I	379.83	3.26	6.09
Мо	I	386.41	3.20	4.57
Мо	Ι	390.30	3.17	3.25
Мо	I	506.25	5.03	0.213
Мо	I	516.78	5.08	0.64
Мо	I	525.90	4.94	0.74

^aTransition probability calculated from level lifetime as discussed in the text.

Measured line profiles result from a convolution of the different shapes that are due to linear Stark broadening, related to the electron density; Doppler broadening, caused by the motion of radiating atoms; instrument profile; and the fine-structure splitting of the sublevels. For H_{α} profiles, a fine-structure correction curve is calculated following the procedure mentioned in Ref. 12, considering all seven sublevel positions. The fine-structure correction is negligible for the other Balmer-series profiles.

To separate Stark and Doppler broadening, a general tendency can be exploited: Doppler broadening scales proportionally to the wavelength of the observed line;² thus, H_{\alpha} shows the largest Doppler broadening effect of the lines we examine. Stark broadening is larger for H_{\beta} and H_{\beta} than for H_{\alpha} and H_{\beta}. Therefore, H_{\alpha} and H_{\beta} are better suited for atomic temperature determinations, and H_{\beta} and H_{\beta} are better tor electron density measurements.

For determining the H-atom temperature, we use only the $\rm H_{\alpha}$ linewidth because $\rm H_{Y}$ Stark-broadening parameters are published in Ref. 2 down to electron densities of only 1 x 10^{15} cm $^{-3}$. Extrapolation of the tabulated values to 1 x 10^{14} cm $^{-3}$ could lead to large errors in the value derived for the Doppler width because the

extrapolated values of the H_{γ} Stark and Doppler widths are roughly equal. Examples of the measured profiles of H_{α} and H_{δ} , together with ideal Gaussian or Lorentzian profiles of equal half-width, are shown in Fig. 3.

Figure 3. Profiles of the H_{m} (upper) and H_{δ} (lower) Balmer lines. The dots are the data. The Gaussian (upper) and Lorentzian (lower) curves have the same half-widths as the measured profiles. H₂ and Mo lines are mixed in the H₈ profile.

The actual defolding procedure uses the tabulated Voigt function parameters.³ Knowing the total width and the width of either a Gaussian or a Lorentzian profile, one can immediately look up the width of the other profile. Hydrogen Stark profiles have nearly Lorentzian shapes, whereas Doppler- and instrumentbroadening effects produce Gaussian shapes. The instrument profile half-width is subtracted from the Doppler-broadening half-width by assuming they add quadratically. Measured line widths, derived electron densities, H-atom energies, and electron distribution temperatures are shown in Table II.

TABLE II DERIVED PLASMA PARAMETERS

Discharge mode ^a	I	II	111	I۷
H _a measured full	0.0725	0.0825	0.0800	0.0350
half-width, nm				
H _B measured full	0.083	0.0925	0.0970	0.0325
half-width, nm				
Electron density,	1.08	1.29	1.66	0.2 ^D
10 ¹⁴ cm ⁻³				
H-atom energy, eV	2.0	2.6	2.3	0.27
Electron distribution				
temperatures, eV				
From Mo I	0.49	0.50	0.55	1.02
From Cs I		0.50		0.28
From Cs II	0.72	0.93	0.72	0.35
From H I			0.33 ^C	

^aDischarge mode: See text.

^bUncertain because the Stark parameter was extrapolated. ^CMeasured line profiles are graphically integrated.

Discussion of the Results

The most striking feature of the derived plasma parameters (Table II) is that the Mo-based electron distribution temperatures have small deviations from

their average, even though the pulsed discharge Conditions I-III are considerably different, and are always considerably lower than the H-atom energies (except for the dc case). Plasma turbulence effects may cause these higher H-atom energies. Strong oscillations of the line intensity signals, even with quiescent discharge voltage and current signals (Fig. 2), support this view. The most likely explanation for the significant deviations between the electron temperatures derived from different atom or ion species is that the electron energy distributions are non-Maxwellian. The small size of the variations of the derived electron density values is also surprising because the discharge currents vary by up to a factor of 3.3 for Conditions I-III. This unexpected behavior may be largely due to the fact that the measurements are performed integrating over the spatial depth of the discharge (Fig. 1) and smoothing out all time-dependent variations with frequencies higher than 10 kHz.

To evaluate particle density ratios, the LTE state must be confirmed. Applying Saha's equation² to cesium at the measured electron temperature (0.55 eV) and density for discharge Condition III, we get an expected Cs^+/Cs^0 density ratio of 6.6 x 10^3 . However, the Boltzman formula with 0.55-eV electron temperature requires a Cs⁺/Cs⁰ density ratio 10⁶ times larger than the Saha result to explain the CsII/CsI (λ = 460 and 455 nm) line intensity ratio. An assumed temperature of 0.93 eV would yield equal values of the Cs⁺/Cs⁰ ratio for the Saha and Boltzman calculations. but all electron temperature measurements for Condition III show significantly lower values. Thus, the conclusion is that the plasma is not in the LTE state, and probably a second population of electrons with higher energies than those corresponding to a Maxwellian distribution for 0.55-eV temperature causes the disagreement. In this situation, it is not justified to derive quantitative particle-density ratios for the source discharge plasma.

A calculation of the relaxation time for the energy exchange between H-atoms and H⁻ ions yields about 1 x 10⁻⁷ s, assuming an atom density of 1 x 10¹⁵ cm⁻³ and a collision cross section of 5 x 10^{-15} cm² (Ref. 13). The corresponding mean free path is 0.2 cm, about ten times less than the source discharge-chamber dimensions, which supports our assumption that the H⁻ ions have the same energies as the H atoms.

For a Maxwellian ion distribution of energy kT. the emittance versus beam fraction for a circular apenture has been calculated.¹⁴ The 2-D, normalized rms emittance is given by $c_{X,Y} = (k1/mc^2)^{1/2} \cdot R/2$, where R is the aperture radius and mc² = 938 MeV. This rms emittance includes 39% of the beam particles. Table III gives the emittance values for each of the four discharge conditions, using the H-atom energy values of Table II for the HT ion energy and R = 0.27 cm. The brightness B is calculated from B = $2I_{-}/(\pi^2 \epsilon_{\chi} \epsilon_{y})$, using the total measured H⁻ current I_. For comparison with these calculated values, the measured values⁵ for Conditions I, II, and III are also given in the last four lines of lable III.

TABLE III EMITTANCE, CURRENT, AND BRIGHTNESS VALUES

Discharge Mode ε _{× V} (π∘cm∘mrad) ^a	I 0.0062	II 0.0071	111 0.0067	IV 0.0023
I_(mA) ^b	90	100	60	1
$B(A/cm^2 \cdot mrad^2)^a$	480	410	270	39
ε _x (π•cm•mrad)	0.017	0.022	0.011	
ε _v (π•cm•mrad)	0.018	0.023	0.012	
I_(mA)	110	100	67	
$B(A/cm^2 \cdot mrad^2)$	72	40	103	

^aCalculated

The measured emittances for the examined beams are considerably larger than the emittances calculated using the H-atom energies; therefore, either the Hion energies are much higher than the H-atom energies or other effects contribute significantly to the measured emittances. These possible sources of emittance include aberrations in the extraction system, magnetic dispersion of the H⁻ ions, increase in the timeaveraged emittance caused by perveance fluctuations in the extraction gap, or nonlinear space-charge compensation effects. Thus, it may be possible to reduce the emittance and increase the brightness of the source by reducing or eliminating one or more of these other effects.

Conclusions

The plasma parameters of the pulsed discharge in the 4X source are H-atom energy, 2-2.6 eV; electron density, 1-1.7 x $10^{14}\ {\rm cm}^{-3};$ and electron temperature, ~0.5 eV. If, as seems likely, the value of the $H^$ energy is equal to the H-atom energy, the lower limit for the 4X source's pulsed H⁻ beam emittance is 0.006 $\pi \cdot \text{cm} \cdot \text{mrad}$ for a 0.54-cm aperture.

Acknowledgments

Thanks to P. Allison for many discussions, R. K. Sander for the loan of the monochromator, and R. A. Tennant for the loan of other optical components.

References

- G. E. Derevyankin and V. G. Dudnikov, "Production of High Brightness H⁻ Beams in Surface-Plasma Sources," AIP Conf. Proc. No. 111, AIP, New York (1984), 376.
 H. R. Griem, <u>Plasma Spectroscopy</u>, (McGraw-Hill, New York, 1964).
 W. Lochte-Holtgreven, Ed., <u>Plasma Diagnostics</u>, (North Holland Publ. Co., Amsterdam, 1968), esp. Vols. 1, 2, 3, 5.
 R. Keller and H. V. Smith, Jr., "Spectroscopic Measurements on an H⁻ Ion Source Discharge," Los Alamos National Laboratory AIS Terh. Note AT-2-AIS-7 (1985).
- Tech. Note AT-2-ATS-7 (1985). H. V. Smith, Jr., P. Allison, and J. D. Sherman, "A Scaled, Cir-cular Emitter Penning SPS for Intense HT Beams," AIP Conf. Proc. No. 111, AIP, New York (1984), 458; and "The 4X Source,"
- 6.
- A. R. Striganov and N. S. Sventitskii, <u>Tables of Spectral Lines</u>
 A. R. Striganov and N. S. Sventitskii, <u>Tables of Spectral Lines</u>
 <u>of Neutral and Ionized Atoms</u>, (IFI/Plenum, New York, 1968).
 A. N. Saidel, V. K. Prokoffev, and S. M. Raiski, <u>Spektraltabellen</u>,
 (VEB Verlag Technik, Berlin, 1961).
 J. Reader, C. H. Corliss, W. L. Wiese, and G. A. Martin, "Wave-nanother and Tempetition Probabilities for theme and theme theme. 7.
- lengths and Transition Probabilities for Atoms and Atomic Ions," National Bureau of Standards, Washington, DC, report NSRDS-NBS-68 (1980).
- S. E. Schnehage, K. Danzmann, R. Kuennemeyer, and M. Kock,
 "Oscillator Strengths of Neutral and Singly Ionised Molybdenum,"
 J. Quant. Spectrosc. Radiat. Transfer <u>29</u> (1983), 507; E. L.
 Nikonova and V. K. Prokof'ev, "The Ratio of the Oscillator 9. Strengths of Components of the Resonance Multiplets of Al. Tl, Cr, Mn, Mo, and Ions of Ba, Ca, and Sr," Optika I Spektroskopiya 1 (1956), 290; and N. N. Kirsanova, "The Absolute Transition Probabilities for the Molybdenum Lines," Zh. Prikl. Spektrosk.
- 15 (1971), 536. W. B. Hawkins, "Cesium Transition Probabilities for Optical U. B. Hawkins, "Cesium Transition Probabilities for Optical Det 123 (1962), 544; C. L. Chen and A. V. 10. Pumping, "Phys. Rev. <u>123</u> (1962), 544; C. L. Chen and A. V. Phelps, "Absorption Coefficients for the Wings of the First Two Resonance Doublets of Cesium Broadened By Argon," Phys. Rev. <u>A7</u> (1973), 470; and O. S. Heaves, "Radiative Transition Probabil-ities of the Lower Excited States of the Alkali Metals," J. Opt. Soc. Am. 51 (1961), 1058.
- Soc. Am. <u>51</u> (1961), 1058. A. L. Osherovich and A. Ya. Nikolaich, "Radiation Lifetimes of Excited States of the Cesium Ion," Optika I Spektroskopiya <u>46</u> (1979), 639; and E. Alvarez, A. Arnesen, A. Bengtson, J. Campos, R. Hallin, C. Nordling, T. Noreland, and O. Staaf, "Hyperfine Structure and Life- time of Some Excited Levels in Cs⁺," Phys. Rev. 431 (1960), 210 11.
- Rev. A21 (1980), 710. M. W. Grossman, "H" Ion Source Diagnostics," Proc. of Symp. on the Production and Neutralization of Negative Hydrogen Ions and 12. Beams, Brookhaven National Laboratory report BNL-50727 (1977). 105.
- D. L. Book, <u>NRL Plasma Formulary</u>, (Naval Research Laboratory, Washington, DC, 1978).
- P. Allison, J. D. Sherman, and H. V. Smith, Jr., "Comparison of Measured Emittance of an H⁻ Ion Beam With a Simple Theory," Los Alamos National Laboratory report LA-8808-MS, (June 1981). 14.