"ARNOLD DIFFUSION" AND DIFFUSION ENHANCEMENT BY THE BEAM-BEAM INTERACTION

D. Neuffer, A. Riddiford and A. G. Ruggiero
Fermi National Accelerator Laboratory*
P. O. Box 500
Batavia, Illinois 60510

Abstract

Results and analyses of computer simulations of the beam-beam interaction in the "Tevatron" pp collider are presented. Long-time simulations of this non-linear two-dimensional (2-D) interaction are undertaken in a search for beam blow-up due to "Arnold Diffusion". No large blow-up is seen in simulation of 20 minutes Tevatron time (60 million turns). In separate investigations it is found that the non-linear interaction can enhance diffusion from external sources, if a low order non-linear resonance be within the "tune spread". A model to describe this enhancement is presented.

Introduction

In the Fermilab Tevatron I project, bunches of protons and antiprotons (p's and p' s) will collide in the 1000 GeV superconducting ring. As these bunches cross each other, particle motions will be perturbed by the non-linear "beam-beam" force from the opposite colliding bunch.

These pp collisions are different from those observed in earlier machines (e+e-, pp) and may have different limiting intensities. It has been suggested, for instance, that the "2-D" nature of pp collisions may cause beam loss due to "Arnold Diffusion". Also the beam-beam limits in e+e- and pp collisions are not fully understood and cannot be simply extrapolated to a pp collider.

To develop an understanding of beam-beam effects, we have undertaken simulations of beam-beam collisions. Results and analyses of these are presented in this paper.

Simulation Procedure: Equations of Motion

In the simulations reported in this paper, particle transport is calculated in three steps: a linear transport; a non-linear beam-beam kick; and a random diffusion kick. Particle motion through millions of these steps are calculated to simulate minutes of beam storage.

Particle motion from interaction region to interaction region is simulated by a linear 4x4 matrix, which is the usual Courant Snyder (C-S) matrix, characterized by the C-S parameters: v_x, v_y "tunes"; a_x, a_y, a_{xy}. The two transverse motions (x and y) are not coupled and $a_x = a_y = 0$ is chosen at the interaction point.

The beam-beam interaction is simulated by adding a non-linear kick to the velocities x', y' of the form $x' + \frac{F_x(x,y)}{A} + \frac{\Delta v}{A} x' + \frac{R_x}{A} x$, where Δv is the "linear tune shift", A the C-S parameter, and this function corresponds to a round gaussian "strong" beam with rms radius σ. This beam-beam force is a "zero-length", "weak-strong" interaction. For the one-dimensional (1-D) cases with external "noise" this force is truncated by setting $y = 0$.

Random diffusion is simulated by adding a random velocity kick to each turn to x', y':

$$x' + x' + \frac{\Delta v}{A} x' + \frac{R_x}{A} x$$

where Δv is the "linear tune shift", A the C-S parameter, and this function corresponds to a round gaussian "strong" beam with rms radius σ. This beam-beam force is a "zero-length", "weak-strong" interaction. For the one-dimensional (1-D) cases with external "noise" this force is truncated by setting $y = 0$.

Long-time Simulation

Recent research has noted that 2-D motion in a non-linear force field can develop excursions to large amplitudes at large time scales, providing effectively unstable motion called "Arnold Diffusion". To determine whether such motion can occur within pp collisions we have undertaken long time scale simulations with high accuracy. In these cases random diffusion is not included and the high accuracy removes small errors so that we can isolate the "stochastic Arnold diffusion".

For these calculations CDC double precision is used to obtain 28 decimal place accuracy for a single turn calculation. Accuracy in a long time simulation was checked by following particle trajectories with different initial conditions forward in time for 60 million turns and then reversing the trajectories. On return, after 120 million turns (40 min. ring time), the initial and final positions agree to 14 decimal places, which indicates the scale of accumulated errors.
The longest time scale simulation which we report here contains 60 million turns of calculations, which would correspond to 20 minutes storage ring in a pp collider with a 20 ns period.

For our cases we have followed the trajectories of 100 sample particles through 60 million turns and fitted the rms emittances \(\varepsilon_x \) and \(\varepsilon_y \) of this ensemble as a function of time to straight lines to obtain doubling times for that emittance.

Case I: \(v_x = 0.245, v = 0.12, \Delta v = 0.01 \). A 20 min. run shows an increase in \(\varepsilon_R = \sqrt{\varepsilon_x^2 + \varepsilon_y^2} \) of 0.5% corresponding to a doubling time of 65 hours. The increase in \(\varepsilon_x \) of 1% is balanced by a decrease in \(\varepsilon_y \) of 0.25% (see Table I). Statistical analysis of our calculation procedures indicates an expected error in this increase of \(\pm 0.1\% \) suggesting that these small changes may be significant.

Case II: \(v_x = v_y = 0.245, \Delta v = 0.01 \). A 20 min. run shows a decrease of \(\varepsilon_R \) of 0.3%, consistent with zero change. Both \(\varepsilon_x \) and \(\varepsilon_y \) show similar small decreases, consistent with zero change.

It has been shown that if \(v_x \neq v_y \) and the strong beam be round, then the quantity \(\varepsilon_y^2 = y^2 - y_x^2 \) is constant, and the equations of motion can be reduced to 1-D and therefore should not show 2-D "Arnold Diffusion." This is consistent with our simulation (case II).

Although a similar invariant has been proven to exist if \(v_x \neq v_y \), we have not found any invariant with \(v_x \neq v_y \). An increase in \(\varepsilon \) by "Arnold Diffusion" in case I is still possible and may explain the small change we see.

In summary, our long-time simulations show that beam-beam collisions with pp parameters (\(\Delta v = 0.01 \), round beams, 1 day storage) should not show large hump-up due to "Arnold Diffusion" (see ref. 3 for details).

Diffusion Enhancement in 1-D Simulation

The random diffusion of eq. (2) causes an increase in rms emittance \(\varepsilon \), defined by

\[
\varepsilon = \varepsilon_0 + D_0 \frac{t}{n_T}
\]

where \(\varepsilon_0 \) and \(\varepsilon_0^2 \) are average values (beam centroid). In the absence of a beam-beam force a random kick causes a linear increase of \(\varepsilon \) with time \(t \) given by

\[
\varepsilon = \varepsilon_0 + D_0 \frac{t}{n_T}
\]

where \(n_T \) is the number of turns and \(D_0 \) is a diffusion constant.

Our numerical simulations show that this increase can be substantially modified by the beam-beam force. The increase remains linear to a first approximation and we rewrite (3) as

\[
\varepsilon = \varepsilon_0 + \alpha \frac{D_0 \cdot t}{n_T}
\]

where \(\alpha \) is a "diffusion enhancement factor". We have calculated \(\alpha \) in 1-D simulations by following \(\approx 100 \) particle trajectories for \(\approx 200,000 \) turns for various values of \(\varepsilon_0 \) and \(D_0 \) and some of these results are displayed in Table II. In these cases we have deliberately chosen \(\Delta v \) and \(D_0 \) larger than in physical pp colliders in order to develop observable effects within short computer times.

From these and other cases we derive some features of this enhancement:

1. \(\alpha \) can be substantially greater than 1 if a major low order resonance (1/4, 1/6, 1/8 ...) be within the tune spread \(\varepsilon_0 \) to \(\varepsilon_0 + \Delta \varepsilon_0 \), with greatest enhancement by lowest order resonances.

2. \(\alpha \) is independent of \(D_0 \).

3. The development of the rms increase in beam size depends on the location of the resonance within the tune spread. If the resonant tune be near \(\varepsilon \), the enhancement is due to a few particles kicked to large amplitudes. If not, the enhancement is distributed more uniformly.

A Model to Describe 1-D Diffusion Enhancement

In Figure 1 we show sample particle trajectories for a particular case \(\varepsilon_0 = 0.20, \Delta v = 0.04 \). Without a beam-beam interaction these trajectories are elliptical with the quantity \(I = \sqrt{x^2 + \beta x \beta x^2} \) invariant. The non-linear force modifies these trajectories so that those with amplitudes \(I = \Delta \) and \(I = \Delta \) are adjacent, where \(I_0 \) is the center and \(2\Delta \) is the width of the resonant region with resonant tune \(\varepsilon_R = \frac{k}{m} \).

In the approximation that the particle motion is dominated by the lowest order resonant harmonics \(I_0 \) and \(\Delta \) can be expressed in terms of the Fourier harmonics of the beam-beam potential \(U(x) \).

\[
U_m(I) = \frac{1}{2\pi} \int_0^{2\pi} U(\sqrt{2I\beta_0 \cos \theta} \cos(m\theta)) d\theta
\]

where \(I \) is defined above and \(\theta \) is defined by \(x = 2I \beta_0 \cos \theta \). \(I_0 \) is the solution of:

\[
\nu = \nu_0 + \frac{\Delta}{2\pi} \frac{I_0}{\beta_0} = 0
\]

and

\[
\Delta = \frac{8 \pi \beta_0 (I_0)^m}{U_m(I_0)}
\]

where \(U_0''(I) = \frac{3}{2} \frac{U_0}{I_0} \)

These relations are derived in ref. 5 which also includes numerical calculations of \(U_m \) for our gaussian potential.
Our model for diffusion enhancement is as follows:

Random diffusion increases particle amplitudes in a Brownian manner. The resonance places the amplitudes adjacent so that Brownian motion increases mean particle amplitudes \(\gamma \Delta \) when particles reach the threshold \(\frac{1}{T} = \frac{I}{\gamma - I} \Delta \). The diffusion is therefore enhanced by a term proportional to the resonance width multiplied by the rate at which particles reach the threshold \(\frac{1}{T} \). For gaussian beams that rate is

\[
\frac{D}{D} = \frac{D_0}{2} \exp \left(- \frac{1}{2} \frac{\Delta}{\gamma - I} \right)
\]

In Table 3 we present comparisons of calculated \(q_E \) with non-linear force taken to set further limits on this process.

Our long-time simulations indicate that there is no large beam blow-up due to "Arnold Diffusion" at \(\beta \) collider parameters. Future simulations will be undertaken to set further limits on this process.

Our 1-D simulations indicate that the coupling of random diffusion from outside sources to the non-linear force is important in limiting beam stability. Extension of our analysis to the \(\beta \) 2-D geometry and inclusion of other non-linear and noise effects such as "tune modulation" and "power supply ripple" will make these limits more precise.

Our analyses to date indicate that \(\beta \) collisions with tune shifts of \(\gamma \) 0.01 should be possible without loss of luminosity, even with storage times of many hours.

References

Table I - Change of Emittance Values in Long Time Simulation

<table>
<thead>
<tr>
<th>(v)</th>
<th>(\Delta \nu)</th>
<th>(\nu)</th>
<th>(\Delta \nu)</th>
<th>(\Delta)</th>
<th>(\nu)</th>
<th>(\Delta \nu)</th>
<th>(\nu)</th>
<th>(\Delta \nu)</th>
<th>(\nu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
<td>.08</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>0.01</td>
<td>0.01</td>
<td>.02</td>
<td>.02</td>
<td>.02</td>
<td>.02</td>
<td>.02</td>
<td>.02</td>
<td>.02</td>
<td>.02</td>
</tr>
<tr>
<td>0.02</td>
<td>0.02</td>
<td>.04</td>
<td>.04</td>
<td>.04</td>
<td>.04</td>
<td>.04</td>
<td>.04</td>
<td>.04</td>
<td>.04</td>
</tr>
<tr>
<td>0.03</td>
<td>0.03</td>
<td>.06</td>
<td>.06</td>
<td>.06</td>
<td>.06</td>
<td>.06</td>
<td>.06</td>
<td>.06</td>
<td>.06</td>
</tr>
<tr>
<td>0.04</td>
<td>0.04</td>
<td>.08</td>
<td>.08</td>
<td>.08</td>
<td>.08</td>
<td>.08</td>
<td>.08</td>
<td>.08</td>
<td>.08</td>
</tr>
<tr>
<td>0.05</td>
<td>0.05</td>
<td>.10</td>
<td>.10</td>
<td>.10</td>
<td>.10</td>
<td>.10</td>
<td>.10</td>
<td>.10</td>
<td>.10</td>
</tr>
</tbody>
</table>

Table II - Diffusion Enhancement in Simulations with 100 Particles, 200,000 Turns

\(v \)	\(\Delta \nu \)	\(\nu \)	\(\Delta \nu \)	\(\nu \)	\(\Delta \nu \)	\(\nu \)	\(\Delta \nu \)	\(\nu \)	
0.00	0.00	.00	.00	.00	.00	.00	.00	.00	.00
0.01	0.01	.01	.01	.01	.01	.01	.01	.01	.01
0.02	0.02	.02	.02	.02	.02	.02	.02	.02	.02
0.03	0.03	.03	.03	.03	.03	.03	.03	.03	.03
0.04	0.04	.04	.04	.04	.04	.04	.04	.04	.04
0.05	0.05	.05	.05	.05	.05	.05	.05	.05	.05

Table III - Comparison of Calculated Diffusion Enhancement with Simulation

\(v \)	\(\Delta \nu \)	\(\nu \)	\(\Delta \nu \)	\(\nu \)	\(\Delta \nu \)	\(\nu \)	\(\Delta \nu \)	\(\nu \)	
0.00	0.00	.00	.00	.00	.00	.00	.00	.00	.00
0.01	0.01	.01	.01	.01	.01	.01	.01	.01	.01
0.02	0.02	.02	.02	.02	.02	.02	.02	.02	.02
0.03	0.03	.03	.03	.03	.03	.03	.03	.03	.03
0.04	0.04	.04	.04	.04	.04	.04	.04	.04	.04
0.05	0.05	.05	.05	.05	.05	.05	.05	.05	.05

Fig. 1 Phase Space Trajectories in Presence of a Non-Linear Resonance (6-th order)