Introduction

The users of the CERN PS complex of accelerators receive beams of particles according to pre-established sequences. The supercycle is made up of interleaved magnetic cycles of different shapes (Fig. 1), one or several cycles allocated to each user. The main users can also automatically accept or refuse the beam and in case of refusal, a backup user receives a beam with the appropriate characteristics.

The allocation of each cycle and also the composition and the duration of the supercycle change frequently during a machine run (6 or 7 weeks). The SPS accelerator, ISR and LEAR storage rings and the 25 GeV physics experiments receive beams in a repetitive sequence, called a supercycle. The coordination is achieved by the Program Lines Sequencer (PLS) which sends to the equipment concerned (before every machine cycle) a serial message, describing the user and the characteristics of the beam. This message is created by an on-line computer using (i) previously-entered information through a series of application programs and (ii) external conditions coming from the process or the users: these signals in turn can modify the information (i) accordingly.

Table 1 gives the main groups of the PLS conditions presently used to control the PSB and the PS. All the PLS conditions are sent to the equipment via a simple distribution system. A serial code called PLS telegram (1 telegram per machine of the PS complex), centrally generated, is sent to the equipment. Locally this telegram is decoded by special modules which distinguish two kinds of equipment:

- PPM equipment which is used on all the cycles of the supercycle and the values of which (voltage, currents) change from one cycle to the next. This kind of equipment receives a group of conditions, each group corresponding to a particular beam property (e.g. intensity). The conditions in a group are exclusive and represent different adjustment levels (e.g. intensity levels).
- Specific equipment which is only activated on one cycle and which receives just its appropriate PLS - yes/no condition.

Table 1 gives the main groups of the PLS conditions presently used to control the PSB and the PS. All the PLS conditions are sent to the equipment via a simple distribution system. A serial code called PLS telegram (1 telegram per machine of the PS complex), centrally generated, is sent to the equipment. Locally this telegram is decoded by special modules which select the appropriate conditions.

A specific computer is dedicated to control this particular process in real-time. It uses two classes of information: i) information for scheduled operations...
with their planned properties introduced from the operation consoles by the operator; 2) information coming directly from the process e.g. synchronization pulses, hardware status and user beam requests. Taking into account all this information, the computer prepares both the next and the present cycle conditions which are then sent to the interface for serial coding.

<table>
<thead>
<tr>
<th>PSB</th>
<th>FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEAM USERS</td>
<td>8 possible users per supercycle</td>
</tr>
<tr>
<td>BEAM PROP.</td>
<td>5 CYCLE TYPES 5 CYCLES LEVELS 5 WORKING POINTS 4 EJECTION MODES</td>
</tr>
<tr>
<td>EXTRACTIIONS</td>
<td>EJECTION INHIBIT 12 FAST EXTRACTIONS, 5 CONTINUOUS TRANSF. 5 SLOW EXTRACTION</td>
</tr>
<tr>
<td>BEAM DESTINATIONS</td>
<td>PS or MEASUREMENT LINE</td>
</tr>
<tr>
<td></td>
<td>8 TRANSFER TUNNELS TO OTHER MACHINES</td>
</tr>
</tbody>
</table>

Table 1

Fig. 2 gives the main scheme of the PS system.

This system presents many advantages for the CPS complex operation:
- by centralising computer control of the PS system, the PPM control is made homogeneous for the whole PS complex.
- The computer working in real-time is the heart of the system and it allows great flexibility for the many changes occurring in the PS operation schedule.
- The new PS operation consoles with their different interactive tools give the operator a very clear presentation of the whole process.
- Good reliability is obtained by using a very simple distribution system and a computer for these complex conditions. In addition, a general computer back-up scheme is available.

PLS System Description

Overall Structure

Since last autumn the PLS is controlled by the new PS control system. Due to its importance for the running of each accelerator and for individual control of the equipment, it was necessary to study and to convert this system into the first package of the overall computer control project.

The PLS computer receives and gives information via standard CAMAC interface, the PLS conditions are sent to all the CAMAC interfaces controlled by the other computers (process and consoles). Figure 3 gives the simplified layout of the PLS in the computer control system. For the following description, we distinguish the software part in the PLS computer and the hardware part (standard and specific interfaces).

PLS Software

The generation of the PLS conditions is achieved by a main task working in real-time (RT) in the computer.

It uses a data table filled from the operation consoles through several application programs. This table, organized according to the Linac pulse number (and also to FS and PSB cycle numbers) contains all the information about the operation scheduled, i.e. beam users, beam properties, destinations, extraction mode, backup users (Fig. 4). Synchronization with the general timing of the machines is made by receiving external key pulses which are used as interrupts to start the RT task each cycle or to synchronize with the supercycle. The external conditions are acquired once each cycle after a key pulse. The RT task then makes a logical calculation in several steps: it checks the status of the external conditions corresponding to the scheduled operation in the data table and decides which user (normal or backup) must receive the beam. After this treatment, two sets of PLS conditions are sent to the interface: conditions announcing the next machine cycle (early program lines) and conditions for the present machine cycle (present program lines).

Several other tasks in the PLS computer complete the main task, e.g.:

- A real-time task called "ALARM" is activated by random interrupts coming from special external events. In this case, part of the PLS conditions are modified and immediately sent to the CAMAC interface.
- Another real-time task allows the sending of PLS information to character generators for video screens every LINAC pulse. These refreshed video signals can be observed on the operation consoles.

The application programs also control the equipment associated to the PLS process, particularly the PS Main Power Supply (supercycle composition) and the Linac Beam Sequencer (Linac destinations). Several acquisition programs have been implemented to display PLS information in real-time (TV colour photo on Fig. 5).
- The Central CAMAC Interface allows the exchange of information between the computer and the process. Synchronization pulses (16) and alarm events (22) are received in interrupt registers; external conditions (64) from PS complex hardware or from users are received in an input register. The computer delivers the PLS conditions (or program lines) via CAMAC output registers (16 words of 16 bits per accelerator).

- The PLS conditions are coded in a specific interface called "PLS encoder". The PLS telegram structure is very simple (Fig. 6); it comprises a pulse train of 10 kHz frequency, each pulse indicating the number of a given PLS condition. If this condition is effectively present for a given machine cycle, this pulse is followed by a second pulse.

- The serialization of the information allows the use of standard timing distribution networks (pulse repeaters and coaxial cables).
- The PLS information is normally distributed between two machine cycles. Fig. 7 shows on the same diagram the distribution times of the telegrams for the PSB and the PS. Real-time events controlled by the "alarm" program and corresponding to the first 16 bits in the telegram can be distributed at any moment within a cycle.

- PLS telegrams are received in CAMAC modules. Two types of utilizations are achieved:
 1. "PLS receiver"modules memorize the whole PLS information. The acquisition of the memorized information is used for synchronization of the process and consoles computers and auxiliary crate controllers (ACC) with the program lines. The ACCs locally control the PPM, by choosing from its memory and sending to the process the appropriate values corresponding to the acquired PLS conditions.
 2. "PLS decoder"modules with 8 independent output channels are used to deliver program lines to specific equipment. The information required is selected by software. Two identical PLS decoder channels are included in the dual preset counter CAMAC modules.

- Special equipment, linked to the PLS process, is controlled by standard modules in a serial CAMAC loop especially the "PS supercycle composition" and the "Linac Beam Sequencer".

Conclusion

The PLS system has been working successfully for 3 months with the PS control system. New sophisticated application programs must still be implemented this year and the conversion of the PLS-PS hardware is envisaged during the next 2 years.

This system showed, from its start-up, qualities of clear presentation, flexibility and reliability, qualities indispensable for the present and future operation of the fast growing PS complex.

Acknowledgements

We wish to thank our colleagues of CERN PS Division and especially J.P. Riunaud who gave very useful contribution for the general design of the PLS system. Particular thanks are also due to our controls project leader, B. Kuiper, for his constant encouragement.

References

1. The PS Staff, reported by J.P. Potier, Pulse-to-pulse modulation of the CERN PS complex, Particle Accelerator Conference, Chicago, 1977.
6. P. Heymans, Private communication.