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Abstract 

We s h a l l  r e s t r i c t  the discussion to proton 
accelerators i n  the multi-GeV energy range and of 
the alternating-gradient synchrotron type, with 
special  a t t e n t i o n  given t o  the exis t ing 30-GeV 
and the  proposed 200- t o  300-GeV nachines. 

R9dia.tion problem c a n  be divided i n t o  two 
broad groups: 
while i t  i s  running and those associated w i t h  the 
EhUt-dOWn machine. The expensa and diff  i c u l t y  of 
coping w i t h  these radiat ion problems Influence the 
choice of design beam intensi ty ,  

those produced by the accelerator  

The problems while the  machine i s  running a r e  
penetration of radiat ion through the shielding, 
muon shielding, penetration of radiat ion through 
ducts ana labyrinths,  skyshine, diffusion of radio- 
ac t ive  air, and radiat ion damage to components. 
Some r e s u l t s  of an LRt-CERN-Rutherford shielding 
experiment on the CERN-PS are presented, 

Problems of the shut-down accelerator  include 
induced a c t i v i t y  i n  the machine components and en- 
closure walls. These rad ia t ion  f i e l d s  a f f e c t  
uaintenance procedures and require appropriate 
handling too ls  and shielded vehicles, 

Introduction 

O u r  primary concern has been with the  radia- 
t i o n  problems associated with the contemplated 200- 
to ~ O O - G ~ V  strong-focusing proton accelerators.l-3 
From the radiation-protection standpoint, these 
machines o f f e r  the advantage over the  ex is t ing  
Brookhaven and CERN synchrotrons that ,  being non- 
existent,  there is no p r i o r  r e s t r i c t i o n  on compon- 
e n t  design o r  operating pr inciples  imposed by 
ex is t ing  s t ructures .  W e  have also studled the  
radlat ion problems at the CEFiR-PS and BNL-AM, 
since these can be considered as models for the  
higher-energy machines, and the  physical processes 
involved i n  cascade production a re  qua l i ta t ive ly  
the same f o r  energies above about 1 2  GeV, Consill- 
a rab le  lower-energy radiat ion invest igat ion has 
taken place at  several proton wchines:  Bevatron, 
Nimrod, Saturne, PPS, and ZGS. For a l l  m u l t i - G e V  
proton and electron acceleraprs, f o r  example, the 
Stanford Linear Accelerator, 
problems are qui te  s i m i l a r ,  t he  differences being 
related to mechanisms of beam loss and cascade de- 
velopment and mchine s t ructure .  

most of the rad ia t ion  

Both the ex is t ing  CERN-PS and BNL-AGS have had 
continuously increasing c i rcu la t ing  beams, so th& 
at present they routinely accelerate 4 t o  6 x 

PrObns/s i n  the 20- tr0 30-GeV energy range. 
represents some 1 to 2 kW of beam power, and the 
problem associated with radiat ion are already 
troublesome. Both machines have improvement pro- 
grams underway that w i l l  increase t h  ir circulat ing 
beam c m e n t s  from LO to  30 times.5,% St ruc tura l  
modifications such as increased thickness of ear th  
shielding w i L 1  be required as w e l l  as increased use 
of' external beams. The ZOO- and 300-GeV designs 
are capable of grea ter  than 1013 protons/s o r  some 
500 kW of beau power. Under the worst circum- 
stances, radiat ion problems could make the accel- 
e r a t o r  site uninhabitable, the accelerator inoper- 
able ,  and maintenance unreasonable. By identifying 
these problems f r o m  the  beginning of the design 
process, it seems feas ib le  t o  bui ld  and maintain 
a high-current synchrotron ( >1013 protons/s) f o r  
a re la t ive ly  small penalty i n  capi ta l  and operating 
cos ts  as compared with a low-current synchrotron 

This 

(.. 10x1 protons/s). 

Figure 1 is a symbolic drawing of a n  acceler-  
ator and i t a  associated radiat ion problems (see 
Table I), both w h i l e  runnlng and when shut down 

Table I. Radiation Problems 

Problem Running Shut Down 

1. 

2, 

3. 

4. 
5. 

6 .  

7. 

8. 

Strongly interact ing par- 
ticles (s.~.P.) penetrating 
shield xx 
Leakage through ducts and 
labyrinths  xx 
Muons penetrating shield XX 

Sky shine xx 
Radiation damage and heat- Xi 
1% 

Radioactive air, water and 
dust  xx xx 
Induced a c t i v i t y  i n  accel- 
erator 
Induced a c t i v i t y  i n  tunnel 
walls 

xx 
xx 

Wherever primary protons are los t ,  all of the 
above-mentioned r a d h t i o n  problems appear and, i n  
a sense, w i l l  be- proportional to the  number of 
protons interact ing i n  a given region. 
but ion of t h i s  beam lose i s  a strong function of 

The diatri- 
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t a rge t ing  and has led  t o  primary re l iance  on ex- 
t rac ted  external  proton beams i n  the proposed 200- 
t o  300-GeV and improved CERN-PS and HNL-AGS. I n  
t h i s  way the most formidable problems can be moved 
to the  ta rge t  s ta t ions  a t  the ends of the extracted 
beams and the rad ia t ion  source Inside the acceler- 
ator tunnel w i l l  be reduced t o  t h a t  f r a c t i o n  of 
the  c i rcu la t ing  beam that i s  not successfully ex- 
tracted. 
external ta rge t  s t a t i o n s  w i l l  be d i f f i c u l t ,  but  
one can work on any one of them without having to 
tu rn  off the accelerator, assuming that one has 
multiple external-beam capabi l i ty .  

Operation and maintenance of these 

The above radiat ion problems will be dis- 
cussed i n  the framework of the  200-GeV design 
which has an  i n i t l d  c i rcu la t ing  c m n t  of 1.5 
times 1013 pmtons/s and an ult imate in tens i ty  
capabi l i ty  of 5 times 1013 protuns/s and a n  
assumed extract ion eff ic iency of 85%. More de- 
tailed treatment is found i n  the references c i t e d  
above. The current  p ic ture  i s  indicated i n  the 
f O l l O N i U g  SeCtiOn8. 

Problem 1. 
Strongly Interact ing P a r t i c l e  Shielding 

Figure 2 shows e a r t h  shields  and machine 
tunnels for the CERN-PS, BNL-Am, SLAC, and 200- 
GeV machines, all shields  adJusted to about the  
=me e a r t h  density, For the Cm-PS and AGS accel- 
e ra tors ,  the s o l i d  l i n e s  are for t h e  ex is t ing  
shields  above the  nontarget areas, and the dashed 
l i n e s  a re  f o r  the  shielding above these quiet  re- 
gions a9ter t h e i r  present improvement programs. 
For the  W a n d  the 200-GeY machines the shields  
a re  designed f o r  the ult imate intensi ty ,  since It 
i s  unduly expensive t o  augment shielding Later. 
For these latter machines the dashed l i n e s  repre- 
s e n t  the shielding above the  t a r g e t  o r  extract ion 
areas. The scale  of the 200-GeV machine i s  such 
that a reduction of 6 f t  i n  the  shield thickness 
(from an original. 23-ft thickness) represents a 
reduction i n  cos t  $ 3. Hence it behooves one t o  
reduce uncertainty here as far as possible, and 
1%1l report  below on a recent experiment that was 
carried out a t  the  CFRN-PS by groups from La, 
CERI?, and Rutherford. 

Problem 2. 

Leakage Through Ducts and Labyrinths 

There are many types of penetrations through 
the  shielding t h a t  o f f e r  a path f r o m  the insiae 
of the tunnel t o  the  outside. These range from 
small ducts f o r  conduits t o  large openings f o r  
personnel and truck access. A s  the source of 
radiat ion increases and the main shielding gets 
thicker,  the leakage paths must be decreased 
through these penetrations. 
rad ia t ion  transmission through ducts were made as 
p a r t  of the experiment mentioned above and w i l l  be 
avai lable  later. 

New measurements on 

Problem 3. 
MWKI (p) Shielding 

The muon is  a weakly interact ing particle, and 
so the  shielding provided f o r  the  S.I.P. may o r  
may not be sufficient to shield against them. 
Pions, which a r e  readi ly  produced i n  high-energy 
interact ions,  can decay i n t o  the weakly Interact ing 
muon (s - t p  + v ) ,  or, i n  material, can strongly 
i n t e r a c t  themselves. Similarly kaons can decay 
i n t o  mmns (K + p + v ) .  Moat energetic muons a re  
from pions and kaons tha t  have decayed i n  f l i g h t  
i n  the air  path between a t a r g e t  and the  shield 
Pace. Some muons r e s u l t  from pion decay i n  the 
re la t ive ly  shor t  range or interact ing Length of 
the pion i n  condensed matter. 
muons a r e  s t rongly peaked i n  t h e  forward, o r  
primary proton beam, direct ion and the ~ u o n  energy 
spectrum extends up t o  the primary proton energy. 

The physical b a s i s  f o r  the d i f f i c u l t y  i n  
shielding from muon8 i s  tha t  they are weakly in- 
te rac t ing  and cannot lose a la rge  Praction of 
t h e i r  energy i n  nuclear interactions.  
izat ion loss for a muon is roughly 2 MeVlg-cm-', 
although t h i s  dE/dX i s  someuhat a l te red  a t  
d i f f e r e n t  energies because of pair prodwtion and 
r e l a t i v i s t i c  rise ef fec ts ,  arid through a Z depen- 
dence, d i f fe ren t  materials have s l i g h t l y  d i f fe ren t  
values. The length of shield necessary t o  s top a 
muon i s  rougly proportional t o  i t s  i n i t i a l  energy. 
For strongly in te rac t ing  par t ic les ,  on the o ther  
hand, w e  speak of an  exponential removal mear free 
path, say 130 g-cm-z. A f t e r  the buildup process, 
t h i s  means t h a t  the energy le f t  i n  the  cascade 
after one mean free path is one/&& that a t  the 
beginning. As the  primary proton o r  pion energy 
increases, the apparent B/aX increases, because 
the  observed removal mean f r e e  path i s  roughly 
constant with energy above 8 f e w  hundred MeV. 

I n  e i t h e r  case 

The ion- 

Figure 3 displays the difference i n  the 
shielding of strongly interact ing p a r t i c l e s  and 
muons. Here w e  are concerned with shielding i n  
the  straight-ahead direct ion,  which is pert inent  
f o r  the  primary beam-disposal area and external-  
beam t a r g e t  s ta t ions.  For S.I.P.ts, after the 
usual buildup, one sees an  exponential decay vs  
depth curve with a mean free path of some 130 g- 
c&. For an incident  proton energy of 200-GeV, 
an  equival n t  mean free path f o r  muons i s  some 

S.12P.t~, 3000 g-cm-2 o r  approximately 6000 lb- 
f t-  , the muon flux i s  mre than two orders of 
magnitude grea te r  than tha t  f o r  s.1.P.'~. 
present  30-GeV BynCh~~trOnS this problem i s  less 
severe, since the  equivalent mean free path f o r  
muons i s  about one four th  t h a t  f o r  200-GeV pro- 
tons. That is, the  muon curve i s  steeper than 
the  one shown i n  Fig. 3, while the removal mean 
free path f o r  S . 1 9 . t ~  is the same as at 200-GeV. 
The absolute beam in tens i ty  a l s o  plays a r o l e  
here, as inspection of the curves I n  Fig. 3 W i l l  
show, As the  in tens i ty  increwes,  one must go t o  

6000 g-cg- 5 . A t  the  shield thickness needed for  

A t  the  
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lower transmission on the S.19. curve, which is 
r e l a t i v e l y  easy because of the  s b % p  slope. 
is re la t ive ly  less decrease i n  the muon trans- 
mission for the s a m e  thickness increase. The 
improved 30-GeV machines w i l l  have forward Shield- 
ing i n  which the  thickness is determined by m u o n s  
and not by S.I.P*fs, as i n  t h e  current si tuation. 

There 

Figure 4 shows a 200-GeV external-beam double 
t a r g e t  s ta t ion,  
pleted uranium and some 5000 tons a r e  r q u i r e d  for 
each s i n g e  station, the  muon range being close to 
the 100-ft length shown, Uranium seems to be the 
bes t  material because its high density and high Z 
results i n  a compact, and probably m i n i m u m  cost ,  
shield, The e n t i r e  f a c i l i t y  requires some 18000 
tons of uranium a t  a t o t a l  coet  of some $ L a .  
The design of muon shields  requires e laborate  com- 
puter  mlcula t iona  but, i n  l i g h t  of the  expense 
involved, these design calculat ions are preferred 
to cut-and-try methods. 

The muon sh ie ld  is made of de- 

Problem 4. Skyshine 

One can accept higher radiat ion levels 
d i rec t ly  on top of the accelerator shield than 
over those portions of the site where almost a l l  
of the staff are located. This i~ because few 
people spend t h e i r  e n t i r e  work week on top o f  the  
shield. Radiation escaping from the Shield can 
propagate to other  p a r t s  of the site and evep. t o  
the  site boundary, beyond which the regulations 
f o r  general  uncontrolled population apply. This 
propagation of escaping radFatlon over distances 
of several hundred meters is  called skyshine, since 
radiat ion that is i n i t i a l l y  directed upwards i s  
a i r -scat tered downwards a t  these d i s t a n t  points. 
If the rad ia t ion  levels  at the accelerator  shr iW 
surface a re  equal t o  o r  l e s s  %an the maximum per- 
missible leve l  f o r  radiat ion workers -- genesally 
ta.ken t o  be 2.5 mem/h -- then a. separation dis- 
tance 3f a few hundred meters t o  occupied buildings 
and s i t e  boundaries i s  suf f ic ien t  t o  reduce t h i s  
skyshine radiat ion t o  acceptable levels .  
same l i n e  of reasoning demands t h a t  radiat ion 
through the r ing  shield not exceed t h i s  2.5 mrem/h 
unless the high-radiation region i s  more than sev- 
e r a l  hundred meters frm buildings and boundaries. 

This 

Problem 5. 
Radioactive A i r ,  Water, and Dust 

A i r ,  water, and dust  within the accelerator  
tunnel w i l l  be made radioactive while the machine 
is i n  operation. 
water are contlnuously recirculated through 
pumping systems that comunicate w i t k A  the outs ide 
eny;troment. A cer ta in  amount of leakage and 
makeup a r e  unavoidable. Attention must be paid t o  
the concentration of the  radioactive e f f luents  es- 
caping from the tunnel and f r o m  t h e  s i te  bound- 
aries. 

During operation the  a i r  and 

After machine turn-off these raaioact ive 
products can afPect maintenance personnel enter ing 
the tunnel. We estimated I n  the 1965 ZOO-GeV 
Design Study,l that if a worker en ters  the  tunnel 
immediately after bean turn-aff, the radioact ive 

air present i n  the qulet, o r  nontarget, portions 
of the tunnel would give 
posure of 13 m m j  therefore, i m d l a t e  entry i n t o  
these area6 is  n o t  precluaed, Howemr, in the 
t a rge t  or a t r m t i o n  area an integrated ex- 
posure of some 8 W  t u r e m  i s  possible; so immediate 
entry here i s  precluded, Therefore, before any- 
one enters  t a r g e t  areas, the air w i l l  be purged, 
which w i l l  take approximately 1 h. 
magnet-cooling water is w t  a serious pmblem, 
since the sy8tem is closed. If magnets are t o  be 
drained, normal radioactive-mnitoring techniques 
a m  required. Sow expe i e n t a l  data exist on the  
radioactive air pmblem?,' The nature of our 
calculat ions and the avai lable  experimental data  
are such that one would not expect great accuracy 
i n  the  above estimatee, but  they do seem to be 
correct to  a f a c t o r  of about five. New masum- 
mente and calculat ions are cal led f o r  before a 
final vent i la t ion system is specffied. 
l e m  seem8 amenable t o  solution. 

him an integrated ex- 

The radioactive 

The prob- 

Problem 6. 
Radiation Damage and Heating 

With several hundred W of beam power avail- 
able, w e  have enough power t o  burn holes i n  
vacuum chambers, extract ion septa, targets ,  and 
beam dumps, 
design a t  possible l o s s  points are needed to solve 
the thermal problem, The primary proton energy i s  
converted through the  cascade proceas t o  ionizing 
radiat ion t h a t  fills the tunnel and can cause 
radiat ion damage t o  suscept ible  materirrls therin. 
A t  the  radiat ion levels expected around accelera- 
t o r s  the physical propert ies  o f  organics, sercicon- 
ductore, and most insulators  are aaversely 
affected, while those of metals are not. The BNL- 
AGS at  i t s  present  i n t e n s i t y  has already had the 
c o i l  insulat ion on a magnet downstream from a tar- 
g e t  f a i l  due t o  radiat ion damage 
recently, a rubber w a t e r  hose failed f o r  the =me 
reason. 
a t  the AGS and i n  t a r g e t  regions are replaced 
frequently, 
solving these problems for the increased in tens i ty  
planned f o r  the improved AGS. The vacuum tank is  
the machitie component c l o s e s t  t o  the  beam, an8 so 
one will f ind  t h e  hlghest  radiat ion f i e l d  there. 
Organic vacuum seals axe unacceptable, as are 
organic vacuum tsnka, so all-metal or m e t a l -  
ceramic vacuum systems are required. Magnet c o i l  
insGIation is exposed t o  the  next-highest f i e l d ,  
and research a t  several laborator ies  is directed 
towa.rd developing  re-radiation-resistant mater -  
ials, This i s  an ac t ive  f ie ld ,  and I think t h e  
bes t  summary is t h a t  one o r  more solut iocs  t o  t h i s  
pmblem exist. A s  much o ther  equipment as possible 
is  remved froe the  tunnel, especial ly  sol id-s ta te  
e lectronics .  
selects the  most r e s i s t a n t  components avai lable  
and, i n  addition, arranges f o r  easy replacement. 

Control of beam loss and protective 

and, more 

Rubber vacum seals are readi ly  damaged 

Considwable efYort is going in to  

For the  i r reducible  minimum, one 
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Problem 7 and 8, 
i n  the Accelerator and i n  the Tunnel Walls 

Induced Act ivi tx  

These two topics are grouped since together 
they are the cause of the shut-down rad ia t ion  
f i e l d  inside the tunnel, that  affects maintenance 
procedures. Rather than go i n t o  d e t a i l  1'11 re- 
fer you t o  the ZOO-EW design document,i my talk 
a t  the 1965 IEEE meeting, and two t a l k s  a t  t h i s  
meeting: 9 

W. Sa l s ig  017 Capability V s  Cost f o r  
Servicing and Handling 
System Choices i n  200-GeV 
Accelerator Design Study 

R. Krevi t t  H-18 Remote Maintenance Tech- 
niques Proposed f o r  the 
ZOC-GeV Accelerator. 

We conclude t h a t  through design, specif icat ion of 
materials, extensive use of extracted beams, and 
operating procedures designed t o  minimize exces- 
sive beem losB, most of the machine can be main- 
tained by unshielded workers i n  the usual contact 
manasr. I n  the much higher radiat ion leve ls  found 
i n  the ta rge t  areas, special  shielded manipulator 
vehicles w i l l  be required. Recent measurements on 
induced a c t i v i t y  i n  accelerator  components and 
concrete tunnel-wall const i tuents  yield r e s u l t s  i n  
rough agreement with those assumed i n  the 200-GeV 
design study. 

CE:RN/LRT.,/FUEL 1966 
Shielding Experiment a t  the CERN-PS 

I n  l a t e  1965 and ear ly  1966 it became appar- 
en t  to many who were involved i n  shielding calcu- 
la t ions  t h a t  the s t a t u s  of the  experimental data 
was not sat isfactory.  There w e r e  several  reasons 
f o r  this1 
laborator ies  yielded d i f f e ren t  r e s u l t s  when com- 
parisons were possible, and of ten d i f fe ren t  types 
of detectors were used so comparison was indirect ;  
mny pmsent  accelerators have shielding of some 
10 f t  of ea r th  cover and extrapolation to 20 f t  
and more f o r  the probLem of i n t e r e s t  has inher- 
e n t  l imitat ions;  and f ina l ly ,  a comprehensive 
shielding experiment requires more people, e q u i p  
ment, and machine t i m e  than w e r e  available f o r  the 
previous measurements. These laboratories par- 
t i c ipa ted  i n  the recent ly  concluded shielded ex- 
periment at the CERN-PSr* Lxt had s i x  part ic i -  
pants - two f r o m  the 200-GeV Accelerator Study 
and four from the Health Physica groups; Ruther- 
ford High Energy Laboratory (RKEL) had three 
members from t h e i r  Health Physics groups; CERN 
had members from t h e i r  Intersect ing Storage Ring 
divis ion and from Health Physics, the Proton 
Synchrotron itself and i t s  operating staff. 
had exclusive use of the PS for eight  12-h periods 
between September 28, 1966 and November 28, l966. 
Analysis of the data i s  i n  progress. 

d i f f e ren t  experiments a t  different  

We 

From previous experiments we learned tha t  it 
was e s s e n t i a l  t o  monitor the beam-loss d is t r ibu t ion  
while measurement of the radiat ion f i e l d  was i n  

progress. 
t r o l ,  or exclusive machine use, together with a 
Large number of simultaneous measurements w e r e  
required. 
determine the radiat ion f i e l d  a t  hundreds of 
locations inside the =china tunnel and within 
the ea r th  shield.. Machine time is conserved i n  
that most of the detectors  can be simultaneously 
exposed and counted after the end of the run. The 
response of these detectors  is w e l l  understood, 
and spec t ra l  information can be obtained. k' were 

I n  pract ice  this meant t h a t  beam con- 

Activation detectors  allowed us to 

able  t o  cover a d namic range from < 1  to 10 Q 
neutron cm-2 sec- I . Counters were a lso  used f o r  
special purposes, An impressive amount of e q u i p  
inent, with the corresponding human ef'fort, was 
required to count the many saanples within the 
times d ic t a t ed  by the induced a c t i v i t i e s  and rel- 
evant decay l ives .  The Berkeley group a i r -  
f re ighted some two tone of counting electronics  
f o r  t h i s  experiment. 
some of t h e i r  samples a t  CERN but air-transported 
most of t h e i r  samples t o  Rutherford f o r  counting. 
The CERN Health Physics group had several of t h e i r  
counters occupied i n  counting samples from t h i s  
experiment. 
detectors used. 

The Rutherford group counted 

Table I1 l i s t s  most of t h e  types of 

Table 11. Detectors w e d  i n  CERN shielding 
experiment 

A .  ActivatiOn Detectors B. Counters C. Other 

AuLg7 + n +Au ' g8  Integrat ing TLD 

=3 

ion 
116 Moderated Fission- 

t r ack  p la te  I P ~  + -+ I~ 

s -tP32 Thorium Nuclear 
f i s s i o n  Emulsion 

Blemuth 
f i ss ion  

24 
A 1  +%a 

c -+c 11 
Au + f b  149 

149 Kg +Tb 

Figure 5 is a plan view of the CERN-PS 
ehowing the 6-in. d r i l l e d  holes f o r  o w  detectors 
above the beam o r b i t  and to the outside of the 
ring. Figure 6 is a cross-section view of the 
accelerator  tunnel and shows a line of these holes. 
Detectors t o  be placed above the beam o r b i t  were 
placed i n  a 10-ft-long sample holder, and cans of 
d i r t  were placed between samples t o  reduce par- 
t i c l e  streaming up these holes. These sample 
holders were raised and lowered by the use of 
rope and pulley attached t o  the tr ipod shown. 
samples i n  the  r a d i a l  holes were placed a t  beam 
height and were raised by ropes. 
l ined with p l a s t i c  tubes. 
the region above the target .  One can see the 
capped tubes and general features.  We were par- 
t i cu la r ly  for tunate  i n  t h a t  the ea r th  cover here 
is flat and does*t f a l l  to a lower grade as one 

The 

These holes were 
Figure 7 is a photo of 
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goes outward, as it does over most of the ring. 
The r a d i a l  holes were for  the purpose of neasuring 
attenuation a t  g rea t  shielding depth, which would 
not have h e n  a8 convenient if the  surface were 
not marconably flat. 

Rum w e r e  made with a clean-up c o l l i m t o r ,  o r  
dump, some distance f r o m  the target. I n  every run 
the loss d i s t r ibu t ion  around the r ing wafi monitored 
by aluminum act ivat ion foi ls  placed on the vacuum 
tank. 
25.6 and 13.8 Gcv. Figure 8 shows the loss p a t t e r n  
around the machine as measurea on the vacuum tank. 
Figure 9 shows the pat tern as meaaured inside the 
machine tunnel bGt near the roof level. Figure 10  
shows the pat tern a t  the ground leve l  on top of 
the shleld. 
downstream f r o m  the target  is  apparent. 

’pwo primary proton energies were used -- 

The s imi la r i ty  i n  the peaks j u s t  

I n  Fig. 11 are plot ted par t ic le  fluxes i n  
r a d i a l  holes corresponding t o  magnet 33, a s  meas- 
ured by the aluminum act ivat ion detectors. 
Although there axe three s t ra ight  l i n e s  on seml- 
log  paper, each giving a mean free path, there is 
only one set of experimental data. When one 
mentions a mean free path, he is implici t ly  using 
a model t h a t  includes an exponential fac*r. 
he doesn’t  e x p l i c i t l y  state  h i s  geometrical model, 
he automatically causes co&wlon. Ignoring 
build-up factora  and assuming we are w e l l  in to  e 
shield,  we can me the following flux-attenuation 

If 

mdelsr  - t/’plane 
Plana wave Q ( t )  E Ooe  

Spherical wave; Q ( t , R )  = (Po (RdR) e sph. 

Cylindrical  wave: Q(t,R) = Oo (R$l)2e-t,A ‘t&yl, 

The plane case is clear, the cy l ind r i ca l  correa- 
wpF3ds to an i n f i n i t e  l i n e  source, and the spher- 
ical COrreSpOndE to a point  source. 
curves it is not c lear  that the experimental 
data are b e t t e r  f i t t e d  by one mo 
y e t  the ?,4k range from 110 g-cm-’to 133 g-cm-2, 
It  turns  out  that if one requires addi t ional  
shielding to reduce the flux by a factor of sev- 
eral hundred, a l l  three models with t h e i r  appro- 
p r i a t e  1’s yield nearly the same shleld thickness. 
The above models are overly simple, and an i n t e -  
gral representation of the problem ( integrated 
over an extended source) w i l l  hopefully yield a 
single ?,. The attenuation of r ad ia t ion  through 
the ea r th  shield of the CERm-PS, for the proton 
loss pat tern observed, can be f a i r l y  w e l l  repre- 
sented by simple models and, w e  expect, satis- 
f a c t o r i l y  represented by more & t a i l e d  models. 
There a r e  two chief problems i n  using these re- 
s u l t s  to calculate  the shielaing f o r  a 200- to 
30Q-GeV accelerator. One has t o  do with the 
difference i n  the nature of the cascde produced 
by the  higher-energy protons as compared with the 
present energies available. The other  haa t o  Bo 

From the 

1 than another, 

with the n a t u r e  of the primary proton-loss pat tern 
around the proposed accelerator. This latter 
problem i s  the  more d i f f i c u l t ,  since it depends 
on the detai led design of the accelerating 
structure. 
one t o  make t h i s  f a c t o r  of ten i n  energy 
extrapolation I n  a conservative way. 

Thnre are scaling l a w s  t h a t  enab le  
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Fig. 1. Schematic representation of radiation problems. 
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200 BeV BNL- AGS Cern - PS SLAC 

Fig. 2. Comparison cross sections of AGS, PS, SLAC, and 200-GeV accelerators. 
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Fig. 3. Transmission vs shielding for strongly inter- 
acting particles (S.I.P.) and muons for inci- 
dent 200-GeV protons. 
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Fig. 4. EPB target stations for the 200-GeV proton accelerator. 
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Fig. 5. Plan view of the LRL/CERN/RHEL shielding experiment. 
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Tarel Clipper 

Fig. 7. Photo of the LRL/CERN/RHEL shielding 
experiment . 
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Fig. 8. Aluminum activation around the PS, on vacu- 

Fig. 10. Aluminum activation around the PS, on top 
of earth shielding at  ground level. 

um tank. 
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\ 
I I \ I  

400 800 1200 
t g/cm2 

Fig. 11. Neutron flux attenuation through earth 
shield, measured radially outward from 
magnet No. 33. 
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