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Summary. A sufficient stability condition
for uniform coasting beams in cyclic particle
accelerators is derived from Neil and Sessler's
dispersion esquation. Specific conditions are
worked out for various injection patterns. The
instability threshold depends fairly strongly
upon the particle density distribution across the
tank, and upon whether operation is below or
above transition energy. For the latter case,
the optimum distribution (allowing the largest
number of particles in the beam) is derived. The
possibility is investigated, using Nyquist dia-
grams, of injecting more particles by operating
in a superstable state - one which depends for
its stability on the low resistance of the tank
walls., It is shown that any practical improve-
ment by this means is probably illusory.

Introduction

Older theoriesl’2 of longitudinal acceler-
ator instabilities, which were based on an analy-~
sis of the negative mass instability, were inade-
gquate in that (1) they did ngt predict instabili-
ties below transition energy” and (2) they pre-
dicted an energy spread needed to suppress iﬂsta-
bilities above transition which was too low. A
more comprehensive theory, which included resis-
tive effects, was developed by Neil and Sessler.?
The aim of this paper is to work out some of the
consequences of Neil and Sessler's theory.

The Theory of Neil and Sessler

Neil and Sessler5 showed that collective
longitudinal oscillations in a uniform coasting
beam in a cyclic particle accelerator could be
cescribed by the plasma dispersion egquation

—— 21 U + 1V
Ut + iVt = n ko B (ﬁg‘:ﬁ?;)
~1
/| aF af (1)
; aF E-oE1
~-1
The quantities U and V are accelerator parameters
given by

U = (N e2n/R) (1 - p3) X

[1 +2 1n (b/a)] (2a)
; {coax, esu)

v = (N e2/b) (28) v wu/8no (2v)
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for a coaxial geometry, in esu; for a rectangular
geometry* more complicated expressions are given
in Reference 5. N is the number of particles in
the beam, a is the beam radius, b is the tank
radius, R is the average path radius, B =v/c, n
is the harmonic number of the instability rela-
tive to the average circulation frequency, w is
the instability angular frequency, and p and o
are constitutive parameters of the vacuum chamber
walls. Experimentally

V << U. (2c)

The running psrameter £ = W/B, where w is a ca-
nonical variable defined in terms of energy E and
particle circulation frequency fc

w =f 98
pRAG)
center
actual sngular momentum -

(3)

angular momentum at center of beam

and & is the half-width of w across the tank;
hence -1 < &€ < 1. The guantity w1 1s related to
the difference between the instability angular
frequency w and the average particle circulation
angular frequency wy through

w=mnw +nk W, (%)

where ko is defined through

ar,
= on —_— . 5
ko 2 fc & (5)
The function F(%) describes the density of parti-
cles as a function of &, and hence essentially as
a function of position across the vacuum chamber.

Note that Equation (1) differs from the for-
mally similar simple plasme equation~ in that the
velocity distribution is narrow and finite, and
in that it is possible that V' # 0 (resistive in-
stability) and/or U' <O (negative mass instabil-
ity). Some of the normal plasma "rules" no
longer apply, €.g£., an F(&) with a single meximum
no longer guarantees stability.

From (1) and (2c) we can write

5 =\JU* \/U/nko . (6)

+A quite accurate U can be cbtained for a strip
beam if 2 1n (b/a) is replaced by 20/30, vhere 7
is the characteristic impedance in &hms between
beam and tank considered as a transmission line.
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Neil and Sessler,S in addition to deriving (1),
discussed stabilization with resonance-line and
Gaussian F(&), derived the necessary stability
condition for any F(£) of finite range that#*

-

lU’I ~ 1, or ® >\‘67£i£;1 (necessary) (1)

and stated that Equation (7) is not too far from
a sufficient stability conditicon if ¢ is suffi-
ciently large.

This paper reports work on sufficient sta-
bility conditicns, optimum stable distributions

and superstable states.

Sufficient Stability Conditions

From the dispersion equation (1) we can see
that U1 and V' are analytic functions of &) =
a+ip except along the path -1 <a <1, B =0,
and hence cobey Laplacels equation in the £1 plane
except along this path. Thus any maximum or min-
imum of U' will lie on the curve

1

Ut o) =U' (a,0) =P ! % g_ga . (8)
1
(The U’ surface may be visualized as a membranc
held by a wire of shape (8) and clamped at zero
displacement at infinity.) The system will be
certainly stable if no collective solubtion ex-~
ists; this will be so if the experimental value
of U' lies completely above the U' surface (for
k, > 0) or completely below it (for ko < 0).
Since the extrema are contained in curve (8), a
strong sufficient condition for stability is

Ut > max %LU' (a)}, k>0 (92)
Ut < min :U' (a):, k <0 . {9p)

As examples consider the two injection
paetterns

FL(8) = (3/0) (1 - ¢) (108)
F, () =(15/16) (1 - £%)° (10b)

which are plotted in Figure 1 and have the re-
spective stability curves

i}

n) - 4 2 (120

and

*As a numerical example, Eqn. (6) may be re-
written in terms of energy for the Princeton-
Pennsylvaria Accelerator at injection as AE ::JU'
¢N/10 (27 keV), where E is the total energy
spread. The maximum permitted energy spread
across the tank at injection is about hl keV.
Hence from Eqn. (7) there will certainly be in-
stability =t injection with about 2,3 x 10
varticles in an ideal uniform 360~ beam.

15 2 15 2 1+ al
Ul (@) = -5 + Fa +3Fa (1 -a”) 1n T
(11b)

which are shown in Figure 2.

For operation sbove transition (kj,< 0), the
system is stable when the experimental U' lies
below the lowest point on the U' (a) curve, or,
for distributions Fy (&) and Fe(g) respectively,

Ul < -3, or 5,513 ﬁU/\n"ko') (sufficient)(12a)
(kO < 0).

Ul < -5, or 8.> .5 ..'"tf’/h"‘kﬁ{ (sufficient)(12b)
2 2 cl \
(k, < C)

On the other hand, beslow transition, the condition
is

Ul > o (logarithmically unstable) (13a)

1
-~ ST '
Ul > 2.1, or B,>, 3.1 vU/n’.&O(sufficient)(l%)
(k, >0)
Hence the parabolic distribution, which will per-
mit the use of 23 O/Q smaller energy spread or the
injection of 67 o/O more particles above transi-
tion, 1s almost useless below transition. (1t is
not, however, true that above transition the
fatter the pattern the better, for the logical
extension of F1 - a rectangular pattern - turns
out tc be unstable both above and below transi-
tion).

As a first approximation, we could use I
above transition and Fp below; however, we can do
much better above transition and =z little better
below.

Optimum Distributions

One way to do better is to cut and try, as
follows; consider the case ko <O (above transi-
tion) for concreteness: Start with, say, F1(£&),
and draw Uj(a), Then choose some other distribu-
tion, for exemple Fp(&) =(5/8)(1 - &%), compute
its stability curve Uf(&), and plot it on the
same graph as Uf(a). ~(See Figure 3). Note that
the curves Uf(a) and Up(a) intersect at the point
a = 0.43, U'Zu) = -2.40. Measure the respective
slopes my and mp &t this point. Then a composite
curve

t LI !
fm_| U. iml’ Uf

i ff 1 (1)
U = [ | \14)
if fmﬂ + 1mﬁ

will have automatically a zero slope at the point
of intersection. If we are fortunate - and we
are in this example - this point will be the min-
imun, Fence if we use not Ty (&) tut the distri-
bution

T T

N NN (15)
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we will have raised the minimum from -3 to -2.40,
i.e., permitted the injection of 25% more parti-
cles.

Suppose we were able to continue improving
the curve this way, getting a flatter and flatter
bottom. The best possible Ut(a) would be one
with a flat bottom from a = 0 to o = 1; we could
do no better, for if F were changed by adding a
little at cne value of £, we would have to sub-
tract a little at another value of &; but then
the flat curve would have a downward and an up-
ward bump, and the minimum would be lower. The
optimum F(&) above transition is simply the nor-
malized integral of the inverse finite range
Hilbert transform! of a constant, and is

+ P
Fﬁigo(w =7y p(8) = (2/n) A1 - &

(16)

the requirement of normalization gives us the
stability condition

Ur <« -2, or

&, >\ 2vU/nk (sufficient) 17)
1/2 7\ /2 g (k. <0) (
c

The optimum F(E) above transition is shown in

Figure 4, and its stebility curve is shown in

Figure 5. A distribution curve F(E) which is
either blunter or sharper than Fl/e(g) will re-
quire a larger |U'| for stability.#

Below transiticn, I have not been able to
find an optimum, but gquite a large number of
curves give about the same maximum so I doubt if
the optimum would give a striking improvement. A
good curve 1is

good _
FkO>O = 0.293 F3/2(§) + 0.707 FS/E(g)
(18)
- 0.203 (8/30)(1 - )32
+ 0,707 (16/50)(1 - £)°/2
which resembles F,. but leads tc the slightly
better stability condition
Ur > 2,83, or 5>\,J':‘27.78¢?: \/G/—l:li;O_
(19)
(sufficient)
(x, >0)

*To return tc our numerical example, the optimum
distribution (16) would permit the P.P.A. at in-
jection to carry about 1.2 x 10+ particles (uni-
formly distributed in azimuth). For the para-
bolic distribution F- of Eqn. (10a) the number

would be about 8 x lOll; for a sensible distribu-
tion chosen or required on other grounds the num-
ber of particles might go as low as 5 x 107,

Supersteabllity

The sufficient stability conditions derived
so far have been independent of V', i.e., inde-
pendent of the wall parameters. They are, in
theory, unnecessarily severe. For the most
liberal gtability condition one may draw a Nyquist
diagram. This is a plot of V' vs. U' as §
travels around the circumference of the unstable
region; the system is stable if and only if the
cperating point (actual U', V') lies outside the
diagram. 1In our case

V' (q,04) = + = (dF/dg)gza . (20)

The Nyquist diagram for Fo is shown in Figure
6. Points in the shaded region (U' < -5 or
U' > 3.1) satisfy our stebility condition. The
cross-hatched region, in which the system is
stable for V' small enough (g large encugh), may
be called the superstable region. By operating
in this region, it would appear possible, for
small V', to use the less stringent stability con-
dition Ut > 2.5 and operate with 244 more parti-
cles in the accelerator.

But we need not stop there. If we used a
sufficiently sharp distribution - almost a delta
function - we could bring the mouth of the inden-
tation all the way to +l. Thus for sufficiently
small V' it would appear possible to use the
necessary condition (7) as a sufficient condition,
as was stated in Reference 5, and cram 3.1 times
as many particles into the accelerater as would
be permitted by (13b). We could also indent to
the left as far as -1 by using a sufficiently
blunt distribution - almost a rectangle.

Unfortunately, in practice any hope of super-
stable operation is probably illusory because of
the impossible demands made on the flatness of
F(t). TFor suppose there were a very small ripple
in F(g), of amplitude 0,001 and wavelength 0.001,
i.e.,

. 27
A F(g) = 0,001 sin gmork - (21)
Then V' would fluctuate up and down with an ampli-
tude of about 20; the real Nygquist diagram would
not look like Figure 6 at all, but would have
violent up and down fluctuations, and every point
in the cross-hatched area would at some time be
inside the diagram. Hence operation in the super-
stable region would actually be unstable, ang ccn-
ditions (9) would, in fact, be the most lenient
possible.
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