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ANALYSIS OF LONGITUDINAL ACCELERATOR INSTABILITIES 

Robert L. Pease* 
Princeton-Pennsylvania Accelerator 

Princeton, New Jersey++++ 

Summary. A sufficient stability condition 
for uniformcoasting beams in cyclic particle 
accelerators is derived from Neil and Sessler's 
dispersion -quation. Specific conditions are 
worked out for various injection patterns. The 
instability threshold depends fairly strongly 
upon the particle density distribution across the 
tank, and upon whether operation is below or 
above transition energy. For the latter case, 
the optimum distribution (allowing the largest 
number of particles in the beam) is derived. The 
possibility is investigated, using Nyquist dia- 
gr=, of injecting more particles by operating 
in a superstable state - one which depends for 
its stability on the low resistance of the tank 
walls. It is shown that any practical improve- 
ment by this means is probably illusory. 

Introduction 

Older theories"* of longitudinal acceler- 
ator instabilities, which were based on an analy- 
sis of the negative mass instability, were inade- 
quate in that (1) they did not predict instabili- 
ties below transition energy3 and (2) they pre- 
dicted an energy spread needed to suppress i sta- 
bilities above transition which was too low. e A 
more comprehensive theory, which included resis- 
tive effects, was developed by Neil and Sessler.5 
The aim of this paper is to work out some of the 
consequences of Neil and Sessler's theory. 

The Theory of Neil and Sessler 

Neil and Sessler5 showed that collective 
longitudinal oscillations in a uniform coasting 
beam in a cyclic particle accelerator could be 
described by the plasma dispersion equation 

Us + iV' = n k. h2 

i d.F d[ 
.YiF5-* (1) 

The quantities U and V are accelerator parameters 
given by5 

U E (K e* n/R) (1 - p2) X 

[ 1 + 2 In (b/a)] 
( coax, esu) 

V f (N e2/b) (2p) v'x 

(*aI 

(*b) 

*On leave from Brooklyn College of the City 
University of New York, Brooklyn 10, N. Y. 

*fork supported by the AEC. 

for a coaxial geometry, in esu; for a rectangular 
geometry+ more complicated expressions are given 
in Reference 5. N is the number of particles in 
the beam, a is the beam radius, b is the tank 
radius, R is the average path radius, 6 EV/C, n 
is the harmonic number of the instability rela- 
tive to the average circulation frequency, w is 
the instability angular frequency, and u and CT 
are constitutive parameters of the vacuum chamber 
walls. Experimentally 

v <c u. (2c) 

The running parameter 5 = w/6, where w is a ca- 
nonical variable defined in terms of energy E and 
particle circulation frequency fc 

" dE 
We f 

i 
centerC 

actual angular momentum - 
- 2n 

i angular momentum at center of beam (3) 

and 6 is the half-width of w across the tank; 
hence -1 2 5 5 1. The quantity WI is related to 
the difference between the instability angular 
frequency w and the average particle circulation 
angular frequency w. through 

w=nw 
0 

+ n k. w1 

where k. is defined through 

(4) 

dfc ko=2flfcz . (5) 

The function F(g) describes the density of parti- 
cles as a function of c, and hence essentially as 
a function of position across the vacuum chamber. 

Note that Equation (1) differs 
mally similar simple plasma equation 
velocity distribution is narrow and finite, and 
in that it is possible that VI # 0 (resistive in- 
stability) and/or U' <0 (negative mass instabil- 
ity). Some of the normal plasma "rules" no 
longer apply, e.g., an F(E) with a single maximum 
no longer guarantees stability. 

From (1) and (2~) we can write 

6 - fi kqq. (6) 

tA quite accurate U can be obtained for a strip 
beam if 2 In (b/a) is replaced by Z /30, where Z. 
is the characteristic impedance in ghms between 
beam and tank considered as a transmission line. 
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meil an& Sessler, 5 in addition to deriving (I), 
discussed stabilization with resonance-line and 
Gaussian F(k), derived the necessary stability 
condition for any F(E) of finite range that* 

IUlI , 1, or S >, U/n'ko/ (necessary) (7) 

and stated that Equation (7) is not too far from 
a sufficient stability condition if 0 is suffi- 
ciently large. 

This paper reports work on sufficient sta- 
bility conditicns, optimum stabie distributions 
and superstable states. 

Sufficient Stability Conditions 

From the dispersion equation (1) we can see 
-that X1 snd 11' are analytic functions of 51 = 
a+ i[r; except along the path -11 a. 5 1, 0 = 3, 
and hence 0.bey Laplace's equation in the 51 plane 
except along this path. Thx any maximum or min- 
inure of U' will lie on the curve 

TJ' (a) = U' (a,o) = P g +$ . 
: 1 

(8) 

(The U’ surface may be visualized as a membrane 
held by a wire of shape (8) and clamped at zero 
displacement at infinity.) The system will be 
certainly stable if no collective solution ex- 
ists; this will be so if the experimental value 
of U1 lies completely above the U' surface (for 
k, > 0) or completely below it (for k, ~0). 
Since the extrema are contained in curve (8), a 

strong sufficient condition for stability is 

IT” > max [UI cd] f k. > 0 (9a) 

U’ < rnin jJt (a)], ko<O . (9) 

As examples consider the two injection 
patterns 

Fl (5) = (3/‘1) (1 - t*) 

F2 (5) = (G/16) (1 - 52)2 

(loa) 

(lob) 

vhich are plotted in Figure 1 ani3 have the re- 
spective stability curves 

u;(a) = -j +%ln il+aj 

11 - Ui 
(lla) 

and 

*As a numerical example, Eqn. (6) may be re- 
written iri terms of energy for the Princeton- 

s lvaria Accelerator at injection as c?E --,'U1 
:??& (& keV), where E is the total energv 
;prea:3. The maximum permitted energy spread" 
across the tank at injection is about 41 keri. 
Hence from Eqn. (7) there will certainly be in- 
stability a; injection with about 2.3 x 10" 
particles in an ideal uniform 360’ beam. 

us (a,) = -5 + +j ,,.* + y a (1 - 2) In ~*I. 

(lib) 

which are shown in Figure 2. 

For operation above transition (k, < 0), the 
system is stable when Y?e experinental U' lies 
below the lowest point on the U' (a) curve, or, 
for distributions Fl(S) and F*(k) respectively, 

ui < -3, or FL> jr? ,,u/+koi [skufT;;ent)(12a) 

0 
I. 

us < -5, or 6*> I 5 . U/n lkci (sufficient)(l2b) 
(ko CC) 

On the other hand, below transition, the condition 
is 

Ui > m (logarithmically unstable) (13.) 

r 
us > 3.1, or 6?>, 3.1 bU/nko(sufficient)(13b) 

(k >Oi 
‘0 

Hence the parabolic distribution, which will per- 
mit the use of 23 "/o smaller energy spread or the 
injection of 67 o/, more particles above sransi- 
tion, is almost useless belog transition. (It is 
not, however, true that above transition the 
fatter the pattern the better, for the logical 
extension of Fl - a rectangular pattern - turns 
out tc be unstable both above and below transi- 
tion). 

As a first approxiniation, we co'~ld use Fl 
above transition and 9 belov; however, we can do 
much better above transition and a little better 
below. 

Optimum Distributions 

One way to do better is to cut and try, as 
follows; consider the case k, < 0 (above transi- 
tion) for concreteness: Start with, say, Fl(k), 
and drab- Uf(a). Then choose some 0th r distribu- 
tion, for example Ff(S) E (5/8)(1 - &), compute 
its stability curve Up(t), and plot it on the 
same graph as Us. (See Figure 3). Note that 
the curves Uf(a) and U?(a) intersect at the point 
a = o.ic3, U'la) = -2.40. Measure the respecti-Je 
slopes nl and mf at this point. Then a composite 
curve 

Uif = 
imfj ui + jn$ Ui 

,m II + imfi 
(14) 

will have automatically a zero slope at the point 
of intersection. If we are fortunate - and we 
are in this example - this point will be %he min- 
imum. Pence if we use not F,(k) but the distri- 
but i on 

Flf = 
imA Fl + i"ll Ff 

61 + /mf/ 
(15) 
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we will have raised the minimum from -3 to -2.40, 
i.e., permitted the injection of 25% more parti- 
cles. 

Suppose we were able to continue improving 
the curve this way, getting a flatter and flatter 
bottom. The best possible U!(a) would be one 
with a flat bottom from a = 0 to a = 1; we could 
do no better, for if F were changed by adding a 
little at one value of 5, we would have to sub- 
tract a little at another v&Je of g; but then 
the flat curve would have a downward and an up- 
ward bump, and the minimum wo7uld be lower, The 
optimum F(k) above transition is simply the nor- 
malized integral of the inverse finite range 
Hilbert transform7 of a constant, and is 

_... 
F;p;o(k$ = Fl,$) I (2/n) \l - c2 ; 

0 

(16) 

the requirement of normalization gives us the 
stability condition 

U' < -2, or 

61,2 > iC2 1 U/nIkol (sufficient) (17) 
(k. CO) 

The optimum F(k) above transition is shown in 
Figure 4, and its stability curve is shown in 
Figure 5. A distribution curve F(5) which is 
either blunter or sharper than FI/2(5) will re- 
quire a larger IU'[ for stability.* 

Below transiticn, I have not been able to 
find an optimum, but quite a large number of 
curves give about the same maximum so I doubt if 
the optimum would give a striking improvement. A 
good curve is 

E'r;; = 0.293 F 
0 

3/2(E) + 3.707 F5,2( 5) 

= 0.293 (8/3$(1 - k2)3’2 
(Q-5) 

+ 0.707 (16/5n)(l - 
2 5/2 

5 ) 

which resembles F2 but leads to the slightly 
better stability condition 

U' > 2 83 or E>+!2 83 ~r@Gi- ’ > . 
0 

(sufficient) 
(k. > 0) 

(19) 

*To return to our numerical example, the optimum 
distribution (16) would permit the P.P.A. at in- 
jection to carry about 1.2 x 101' particles (uni- 
formly distributed in azimuth). For the para- 
bolic distribution F- of Eqn. (lOa) the number 

would be about 8 x 1011; for a sensible distribu- 
tion chosen or required on other grounds 'r&f num- 
ber of particles might go as low as 5 x 10 . 

Superstability 

The suf'T'icient stability conditions derived 
so far have been independent of VI, i.e., inde- 
pendent of the wall parameters. They are, in 
theory, -unnecessarily severe. For the most 
liberal tability condition one may draw a Nyquist 
diagrtcn.g This is a plot of V' vs. U' as 5 
travels around the circumference of the u&table 
region; the system is stable if and only if the 
operating point (actual U', VI) lies outside the 
diagram. In our case 

V' (a.,O+) = 2 I( (dF/d+a . (20) 

The Nyquist diagram for F2 is shown in Figure 
6. Points in the shaded region (U* < -5 or 
U' > 3.1) satisfy our stability condition. The 
cross-hatched region, in which the system is 
stable for VI small enough (0 large enough), may 
be called the superstable region. By operating 
in this region, it would appear possible, for 
small V', to use the less stringent stability con- 
dition U' > 2.5 and operate with 24% more parti- 
cles in the accelerator. 

But we need not stop there. If we used a 
sufficiently sharp distribution - almost a delta 
function - we could bring the mouth of the inden- 
tation all the way to +l. Thus for sufficiently 
small VI it would appear possible to use the 
necessary condition (7) as a sufficient condition, 
as was stated in Reference 5, and cram 3.1 times 
as many particles into the accelerator as would 
be permitted by (13b). We could also indent to 
the left as far as -1 by using a sufficiently 
blunt distribution - almost a rectangle. 

Unfortunately, in practice any hope of super- 
stable operation is probably illusory because of 
the impossible demands made on the flatness of 
F( 5). For suppose there were a very small ripple 
in F(k), of amplitude 0.001 and wavelength 0.001, 
i.e., 

A F(t) = 0.001 sin $&-t . . (21) 

Then VI would fluctuate up and down with an ampli- 
tude of about 20; the real Nyquist diagram would 
not look like Figure 6 at all, but would have 
violent up and down fluctuations, and every point 
in the cross-hatched area would at some time be 
inside the diagram. Hence operation in the super- 
stable region would actually be unstable, ana ccn- 
ditions (9) would, in fact, be the most lenient 
possible. 



564 IEEE TRAT'ISACTIONS ON ~~flJCLF3'3 SCUPJCE tune J 

Ackxowlecl.gements 

I am indebted to Drs. M. Q. Barton, 
F. G, Wlnlte, F'. C. Shomaker and J. W. Btnoit, 
arid 8.1~30 to members of' the Princeton Plasma 
Physics Lab3ratorji , for helpful discussions, to 
MY. Fran-is Allol;ey for a summer's help with the 
mal:&icsl and compdational work, and ir. par- 
ticular to Dr. A. Z. Sessl?r for extensive 
corresporder~ce. 

References 

I o A, A. Kolomensky an3 A. N. Lebedev, Proc. 
Intl. Conf. on Hi& En. Accel, & Instr., 
Geneva, 1959, il5-1-9; (1559) 

2 . C. E. Nielsen, A. K. Sesslzr & K. R. &on, 

L -. 
‘, 

OB- 
\,..-F,(t)= +I-[*)* 

\ \ 

.Proc. intl. Cmf. on HLgh En. Accel. EC 
Instr., Geneva, 1959, 239-252 (1959) 

3. C. D. Curtis et al., Proc. Intl. Cod. on 
Hi& En. Accel., Dubna, 1363, 620-652 (19%) 

4. M. 9. Barton, Proc. Intl. Conf'. on Hi& En. 
Aczel., Dubna, 1.963, 157-160 (1964) 

5. T. K. Neil and A. ZVT. Sessler, Lawrence Ra5. 
Lab. Report ~~~-11089 (23 October 1963, 
revised 29 September 1964), tc be published 
in Rev. Sci. Instr. 

6. See for instance J. 3. Jackson, J. Nucl. 
Energy 2, 171-83 (l$O) 

7. II. Sokngm, blath. Zeitz. 5, 2Li5-6!f (1.933) 

-6- 

F”g. :. Farah ;?k (Fl) and quart,i_c (F2) partick 
+naity distributions across the vaxnm cha+zr. 
Ys'f rf I'll-vr: (g&o) shown. 

Fig. 3, Stability cwves for parah0li.c (3;) am-1 
quarti_c :U$) distributf.ons. Half of cxrw 
(o( 3 0) shorm. 



1965 PEASE: ANALYSIS OF LONGITUDINAL ACCELERATOR INSTABILITIES 565 

Fif. 3. An optimized canpoaite stability curve 
(U I- 
to % 

a linear canbinatlon of Ui and U; chosen 
ave zero slope at their tntersection. Half 

of CUI-VB (* 0) shown. 

as --.--. 

'.\ 
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‘\ 

Fig. b. Optbum d1Lstri.but1on ciwve for operatton 
above transitSon. Half of curve Q"-O) shown). 
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Fig. 5. Stabi1i.Q curve for opttim distribution 
above transition. Half of curw (420) shown. 

Fig. 6. Nyqufet dfagrm for F2. 


