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Abstract 
Standard models of the intra-beam scattering (IBS) are 

based on the growth of the rms beam parameters for a 
Gaussian distribution. As a result of electron cooling, the 
core of beam distribution is cooled much faster than the 
tails, producing a denser core.  In this paper, we compare 
various approaches to IBS treatment for such distribution. 
Its impact on the luminosity is also discussed. 

CORE-TAIL MODEL 
Formation of a dense core due to cooling and diffusion 

is modeled using the macro-particle approach which 
allows variable with time beam distribution. The 
individual-particle kicks due to cooling and IBS are 
applied in the velocity space.  Such approach was the 
basis of the SIMCOOL code [1] and was also recently 
implemented in the BETACOOL code as a “Model 
Beam” approach [2]. To account for a core collapse 
(which directly impacts luminosity in a collider) of ion 
distribution, the “core-tail” model for the IBS was 
proposed. In general, to describe dynamics of such 
distributions an accurate kinetic simulation is required 
which will be addressed in the future work. With the core-
tail model we attempt to capture only basic features of the 
core formation in order to estimate the luminosity. In this 
model, the individual-particle kick in the velocity space 
due to IBS is applied based on diffusion coefficients 
which are different for particles inside and outside of the 
core. Cooling process for typical RHIC parameters [3] is 
shown in Figs. 1-4. Figure 1 shows that an rms emittance 
under cooling stays approximately constant for these 
parameters, while there is a fast formation of a distinct 
core in the beam profiles. 

 

 
 
Figure 1: Time evolution of unnormalized transverse rms 
emittance for typical magnetized cooling parameters of 
Au ions at 100 GeV/u. 
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Figure 2: Transverse profile of ion beam after 1 hour of 
cooling with the IBS calculation based on rms values of 
full distribution. 

 

Figure 3: Transverse profile of ion beam after 1 hour of 
cooling with the “core-tail” IBS approach. 

 

Figure 4: Luminosity growth using IBS approach based 
the rms of full distribution (red top curve) and using 
“core-tail” approach (blue), for typical parameters of the 
magnetized cooling for Au ions at 100 GeV/u. 
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For the distribution with a pronounced core, if one 
calculates the rms parameters of a full distribution (with 
tails) and uses them to calculate the IBS kicks on all 
particles, the IBS for particles in the core may be strongly 
underestimated. Figure 2 shows formation of a 
“collapsed” core when the IBS kicks are applied based on 
the rms parameters calculated for a full distribution 
(which are approximately constant for chosen parameters, 
see Fig. 1). This calls for a different treatment of particles 
in the core and tails. Figure 3 shows beam distribution 
when IBS kicks are applied according to the “core-tail” 
model. The predicted luminosity based on these two 
approaches is very different, as shown in Fig. 4 (with 
logarithmic scale on the vertical axis). 

To demonstrate how the core-tail model works we use 
simplified expressions for the diffusion coefficients based 
on the gas-relaxation formula [4,5]. In an approximation 
that the transverse temperature of the ion beam is much 
higher than the longitudinal, the longitudinal coefficient 
can be easily derived [6].  Such approximation is valid for 
energies much higher than the transition energies as can 
be seen from the flatness parameter which is defined as a 
ratio of beam temperatures in the beam moving frame. As 
a result, this parameter describes a degree of flatness of 
the distribution function in the velocity space: 
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where σp is an rms momentum spread, ε is an rms 
emittance, and βa is the beta function averaged over the 
ring. For typical parameters of Au ions in RHIC at 100 
GeV/u the flatness parameter is 0.1-0.2, and assumption 
that the distribution is flat (vtransverse >> vlongitudinal) may be 
used. In such an approximation, the diffusion coefficient 
in the longitudinal direction  can be written for a bunched 
beam as [5]: 
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where εx is the horizontal rms beam emittance, σs is an 
rms bunch length, βa is an average beta-function over the 
ring lattice, r is the classical radius, Λibs is the Coulomb 
logarithm for IBS, and N is the total number of particles 
in a bunch. Note, that one gets exactly the same 
coefficient apart from a factor (2/π)1/2, using the high-
energy approximation of Bjorken-Mtingwa [7] formulas 
for the IBS with an assumption of a smooth lattice [5]. In 
the “core-tail” model one finds rms parameters separately 
for the core (εc, σsc) and tails (ε, σs) of the distribution. 
These rms parameters are then used to apply different 
diffusion kicks for particles which are in the core and tails 
according to the expressions  
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The accuracy of the algorithm depends on finding a 
number of particle in the core of the distribution Ncore and 
an rms parameters for the core and tails. In the first 
simplified approach, the core parameters were determined 
through the FWHM of the distribution while an rms 
parameters of the full distribution were used for the tails. 
This model was later improved with a numerical 
procedure which fits two Gaussian distributions to a real 
distribution observed in simulations for each time step of 
the calculation. The amplitude and width of fitted 
Gaussians (in all three directions) provide more accurate 
parameters which are used instead of ε, εc, σs, σsc in the 
diffusion coefficients. In the same approximation of the 
high energy, when heating is dominated by a longitudinal 
degree of freedom, the transverse diffusion rate can be 
expressed through the longitudinal one using the H-
function of the ring (for a smooth lattice it is  <Dx

2/βx >): 
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where σp is the rms momentum spread,  Dx, D’x, αx, βx are 
the lattice functions,  < >  stands for averaging over the 
ring, and the longitudinal growth rate is defined as 
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More general relations, which are valid for all energies 
and include derivatives of the lattice functions are 
summarized in [7,8,9]. In fact, for accurate simulation of 
the IBS in RHIC we do use one of the expressions from 
[7,8,9], all of which are implemented in the BETACOOL 
code, and were recently cross-checked vs. one another 
[10]. Experimental verification of these models vs. 
dedicated experiments of IBS at RHIC [11] with good 
agreement, increased our confidence in numeric models 
being used. The “core-tail” approach is also implemented 
in the BETACOOL code. As a result, it allows us to use 
more accurate diffusion coefficients (rather than the one 
in Eq. (2)) which can take into account correct ratio 
between the temperatures of the ion beam, as well as 
realistic RHIC lattice (including derivatives). In addition, 
the standard IBS theory was recently reformulated for the 
growth rates of a bi-Gaussian distribution [12].  

DIFFUSION COEFFICIENTS  
The “core-tail” model described in previous section is 

just an application of standard IBS theory [7,8,9] for the 
distribution which has a pronounced core with an attempt 
to have an estimate for expected luminosity. Also, it does 
not take into account dependence of the diffusion 
coefficients on particle amplitudes within the core. Below 
we try to explore the accuracy of such assumption. 

A detailed treatment of the IBS, which depends on 
individual particle amplitudes, was recently proposed by 
Burov [13], with an analytic formulation done for a 
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Gaussian distribution in approximation that transverse 
rms velocity of the ion beam is much higher than the 
longitudinal. In general, for accurate dependence of the 
diffusion coefficients on both the transverse and 
longitudinal velocities, which are needed to describe IBS 
for different beam parameters at different energies (which 
is one of the tasks for RHIC since cooling at various 
energies is considered [14]), the integrals over the 
distribution function should be performed numerically. 
Similar algorithm was recently implemented for 
numerical calculation of the non-magnetized friction force 
[2], for example. For accurate IBS calculation one has to 
calculate such integrals at each lattice element which 
would make calculations too slow. However, similar 
approach is presently being considered for a simplified 
lattice structure in order to perform needed benchmarking 
of the core-tail model. 

In the “core-tail” model, the diffusion coefficients are 
found at each lattice element for the particles in the core 
and tails of beam distribution. However, the assumption is 
made that all particle in the core get the same kick 
compared to the amplitude-dependent coefficient within 
the core. To understand the accuracy of this 
approximation one can have a look at the dependence of 
the diffusion coefficient on amplitude. For anisotropic 
Maxwellian distribution written in the form: 
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the longitudinal component of the diffusion tensor is 
given by 
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with xuu ˆ=r  and xuvw ˆ−=r . When one assumes that 
an rms transverse velocity is much larger than the 
longitudinal one (flattened  distribution), the integrals can 
be easily evaluated, as shown, for example, by Sorensen 
[5], with the result: 
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A generalization of this expression to include also 
dependence on spatial amplitudes was done by Burov 
[13]. The function in square brackets in Eq. (9) decreases 
very slowly with the amplitude u. For u=0, it gives a 

factor π , while for amplitudes equal to an rms value 

⊥∆ , the expression in the square brackets is close to 
unity, which allows us to approximate the amplitude 
dependence by an rms values with a reasonably good 
accuracy. The expression in Eq. (9) is then simply 
becomes:   
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When rewritten in terms of beam parameters for the 
bunched beam, Eq. (10) gives Eq. (2). As a result, it 
seems that an assumption of a constant-amplitude kick 
based on the rms values should give reasonably accurate 
estimate. At the same time it allows us to do efficient 
computer calculations and include (in an accurate way) 
the ratio between the transverse and longitudinal beam 
velocities without approximations. Also, such an 
assumption allows us fast calculation of the IBS at each 
lattice element with a realistic lattice rather than assuming 
a smooth approximation. The formulas for “detailed” IBS 
by Burov [13] were also included in the BETACOOL. 
Cooling dynamics results based on the “detailed” and 
“core-tail” approach were found qualitatively similar. 
However, it is not clear whether observed differences are 
related to the amplitude dependence or to the 
approximations being made in [13]. At this point, we are 
evaluating various scenarios, including the use of 
formalism in [12] for the diffusion coefficients, as well as 
a possibility of an accurate numerical calculation, to 
understand what is the most efficient and at the same time 
sufficiently accurate approach. Benchmarking vs. 3D 
“IBS map” approach [15], as well as vs. experiments is 
also being considered. 

ACKNOWLEDGMENTS 
We would like to thank A. Burov, V. Lebedev, J. Wei 

and the Accelerator Physics Group of Electron Cooling 
Project of RHIC for many useful discussions during these 
studies. We also acknowledge collaboration on this 
subject with the INTAS project “Advanced Beam 
Dynamics for Storage Rings”. 

REFERENCES 
[1] The SIMCOOL code was originally developed at 

BINP, Novosibirsk; see for details A.V. Fedotov et al., 
TPAT090 (these proceedings). 

[2] The BETACOOL program, http://lepta.jinr.ru 
[3] RHIC E-cooler Design Report   
http://www.agsrhichome.bnl.gov/eCool 
[4] I. Ben-Zvi, V.V. Parkhomchuk,  C-AD/AP/47 (2001). 
[5] A.V. Fedotov, Tech. Note C-AD/AP/168 (2004). 
[6] A. Sorensen, CERN Acc. School (1987). 
[7] Bjorken and Mtingwa, Part. Acc., 13, p.115 (1983). 
[8] M. Martini, CERN PS/84-9 (1984). 
[9] A. Piwinski, CERN AS, CERN 85-19, p.451 (1985). 
[10] G. Trubnikov, A.V. Fedotov (2004), unpublished. 
[11] J. Wei et al., TPAT081, these proceedings (2004). 
[12] G. Parzen, Tech. Note C-AD/AP/150 (2004). 
[13]  A. Burov, FERMILAB-TM-2213 (2003). 
[14] A. V. Fedotov, TPAT089, these proceedings. 
[15] P. Zenkevich et al., Proceedings of ICFA-HB2004 

Workshop, Bensheim, Germany (2004). 

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

4265 0-7803-8859-3/05/$20.00 c©2005 IEEE


