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Abstract 
We define self-consistent beam distributions to have the 

following properties: 1) time-independence or periodicity, 
2) linear space charge forces, and 3) maintainance of their 
defining shape and density under all linear 
transformations. The periodic condition guarantees zero 
space-charge-induced halo growth and beam loss during 
injection. Some self-consistent distributions can be 
manipulated into flat, or possibly even point-like, beams, 
which makes them interesting to colliders and to heavy-
ion fusion.  This paper discusses methods for painting 2D 
and 3D self-consistent distributions and for their 
manipulation to produce flat and point-like beams. 

INTRODUCTION 
In previous papers [1-3], we described and studied a 

set of beam distributions which we call self-consistent. By 
self-consistent, we mean beam distributions that 1) are 
time-independent or periodic in time, 2) support linear 
space charge forces, and 3) maintain their defining shape 
and density under all linear transformations. Reference 1 
generalized previous studies of self-consistent beams [4-
9] by demonstrating a systematic method to create an 
infinite number of self-consistent distributions in any  
number of dimensions. In phase space these distributions 
are functions of the constants of motion that take the form 
of functions of the Hamiltonian times δ functions of linear 
combinations of the phase space variables. The  
distributions are classified by the notation {n,m}, where n 
is the number of spatial dimensions and m is the number 
of δ functions of linear phase space combinations. These 
distributions are characterized by ellipsoidal or linear 
relationships between the phase space variables and by 
constant particle densities. Self-consistent distributions  
are of interest in high intensity accelerators because they 
have the desirable property of suppressing space-charge-
induced halo growth and associated beam loss.  
Furthermore, certain self-consistent distributions can be 
manipulated to produce flat, or possibly even point-like, 
beams, and are therefore candidates for applications in 
colliders and heavy ion fusion. References [2,3] studied 
some of the properties of these distributions. In this paper 
we illustrate certain features of self-consistent  
distributions. Specifically, we demonstrate the painting of 
a 2D self-consistent coasting beam into the SNS ring and 
the use of solenoids to maintain self-consistency in the 
presence of nonlinear forces. We also show the transport 
of a 3D self-consistent distribution followed by its 
compression to a flat beam through the use of a skew 
quadrupole and subsequent transport. 

PAINTING A SELF-CONSISTENT 
COASTING BEAM INTO SNS 

In Ref. 1, we demonstrated the painting of a self-
consistent coasting beam distribution of type {2,2} into 
the SNS lattice. This was accomplished by setting the 
lattice tunes equal and by painting in x' and y' as well as 
in x and y. The necessary injection bump waveforms are 
within the capability of the SNS injection kickers. The 
calculation was carried out neglecting space charge and 
assuming purely linear transport. Subsequent calculations 
demonstrate that even small nonlinearities, such as 
quadrupole fringe fields or activation of chromaticity 
correction sextupoles, destroys the self-consistency: 
ellipticity is lost along with the uniform density. If, in 
addition to these nonlinearities the space charge force is 
introduced, the beam distribution again becomes 
elliptical, although the ellipse has a different shape in 
response to the space-charge-induced change in the beta 
functions. 

 

 

eigenvectors, each taken turn by turn over 1000 turns. 
Bottom) Eigenvectors in vertical phase space, together 
with self-consistent beam distribution painted to one of 
the eigenvectors. 

Figure 1:   Top) Tune footprint for the two 
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In order to make the self-consistency more robust in 
the presence of nonlinearities, we introduce two solenoids 
symmetrically into the SNS lattice and activate them in 
order to split the lattice tunes (Fig. 1). The presence of the 
solenoids leads to two pairs of complex conjugate 
eigenfunctions with conjugate eigenvalues for the ring  
transfer matrix in transverse phase space, and it is 
possible to paint a self-consistent {2,2} distribution to the 
real or imaginary part of either of the eigenfunction pairs 
(Fig. 1). As in the previous case, the painting involves x' 
and y' as well as x and y and is within the capabilities of 
the SNS injection kickers. The results show that a self-
consistent elliptical beam of uniform charge density is 
obtained, even in the presence of fringe fields and 
chromaticity correction sextupoles. The addition of space 
charge leads to results that are similar to those obtained 
without solenoids, in the sense that the ellipse has a 
different shape and the particle distribution is less 
uniform. 

Although we have succeeded in painting self-
consistent 2D distributions, we have not yet done so for a 
3D distribution. Maintaining self-consistency during  
painting for a 2D distribution is relatively straightforward 
for a machine like SNS. The time scale for painting (1000 
turns in SNS) is very slow compared to betatron  
oscillations (six per turn in SNS), so for irrational betatron 
tunes the beam is always well mixed right out to the most 
recently painted edges. Thus, a self-consistent distribution 
can be easily maintained throughout the painting process. 
To maintain a self-consistent 3D beam throughout 
painting will require laying on spherical shells with all the 
mathematical self-consistency relationships. This requires 
a time scale for painting of less than 1 turn, rather than 
1000 turns. Also, 3D self-consistency will require 
variation of the energy, as well as the transverse phase 
space coordinates, during every turn, and this variation 
must increase throughout the accumulation process. 

MAKING A FLAT BEAM FROM A 3D 
SELF-CONSISTENT DISTRIBUTION 
As a further study, we created a flat beam from a {3,2} 

distribution. Such a distribution is a 3D constant density 
ellipsoid in all projections except for two linear 
relationships, which we chose between x-y' and between 
y-x', as shown in Fig. 2. Although we have not yet tried to 
paint such a distribution, we defined one numerically with 
parameters matching it into the SNS lattice. To test the 
self-consistency we transported this distribution linearly 
without change for 100 turns assuming no space charge 
(Fig. 2).  

After 100 turns, we passed the beam through a skew 
quadrupole with strength chosen to zero out y', as shown 
in Fig. 3. This is possible because of the linear 
relationship between x and y' given by the {3,2} 
distribution. Following the skew quadrupole, the beam is 
transported for a π/2 betatron phase advance so that, 
rather than y', it is now y that is zero, giving a flat beam. 

 

 

Figure 2:  Top) y-φ projection for matched {3,2} 
distribution after 100 turns. Bottom) x-y' and y-x' 
projections for matched {3,2} distribution after 100 turns. 

Unlike the coasting beam studies shown above, this 
work was carried out using linear transport and neglecting 
space charge. Neglecting space charge is justified for high 
energy beams, as in colliders, where intrabeam space 
charge forces are small. Future studies will focus on the 
effects of nonlinearities as well as on methods to 
overcome the difficulties of painting 3D self-consistent 
distributions that were discussed above. 

Another possibility involves the use of self-consistent 
distributions for the production of point-like beams. This 
is not possible using a skew quadrupole for the {3,2} 
distribution here because the x-y' and y-x' relations shown 
in Fig. 2 are not aligned. We have found that for half 
integer betatron tunes, the scheme we use to paint {2,2} 
distributions leads to linear relationships between x-x' and 
y-y' as well as x-y' and y-x'. In this case, if the tunes are 
equal and a normal quadrupole is placed at a location 
where the beta functions are equal, the quadrupole 
strength can be used to zero x' and y' simultaneously. 
Then, a π/2 betatron phase advance will lead to a point 
beam. Unfortunately, the painting scheme does not 
produce a self-consistent beam for rational tunes and 
nonlinear effects will lead to additional problems.  We are 

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

2195 0-7803-8859-3/05/$20.00 c©2005 IEEE



studying other possibilities for creating self-consistent 
beams that can be manipulated to give point beams. 
Clearly, we will need at least two linear relationships 
between phase space coordinates to accomplish this. 

 

 

 

Figure 3:  Top) Creation of flat beam by passing {3,2} 
distribution through skew quadrupole followed by 
transport. Bottom) Real space transverse projections of 
beam before and after flattening procedure. 
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