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Abstract 

The transverse resistive-wall impedance is discussed 
in the particular case of the LHC collimators, which 
reveal a new physical regime. Single-bunch and coupled-
bunch instability mechanisms are then reviewed in both 
longitudinal and transverse planes. Stabilization by 
Landau damping, feedbacks, or linear coupling between 
the transverse planes is also treated. 

INTRODUCTION 
As the beam intensity increases, the electromagnetic 

fields self-generated by the beam, particularly the fields 
generated by the beam interacting with its surroundings, 
will perturb the external fields prescribed by the 
accelerator design, which is made considering the beam 
as a collection of noninteracting single particles [1,2]. 
These electromagnetic fields are called wake fields since 
they remain usually behind the (ultra-relativistic) exciting 
particles. These wake fields can influence the motion of 
trailing particles, in the longitudinal and in one or both 
transverse directions, leading to energy loss, beam 
instabilities, or producing undesirable secondary effects 
such as excessive heating of sensitive components at or 
near the chamber wall. Therefore, in addition to the 
“single-particle phenomena”, “collective effects” become 
important. In fact, for a collective instability to occur, the 
beam must not be ultra-relativistic, or its environment 
must not be a perfectly conducting smooth pipe. This is 
never the case in practice due to the complexity of the 
vacuum vessel, which is always composed of expansion 
bellows, connection flanges, pumping ports, accelerating 
RF cavities, monitors, kickers, collimators (highly 
resistive graphite will be used in the LHC to withstand 
the high temperatures generated by the impact of high-
energy protons), etc. Therefore, in practice the elements 
of the vacuum chamber should be designed to minimise 
the self-generated electromagnetic fields. For example, 
chambers with different cross-sections should be 
connected with tapered transitions; bellows need to be 
separated from the beam by shielding; plates should be 
grounded or terminated to avoid reflections, etc. 

Two approaches are usually used to deal with 
collective instabilities. One starts from the single-particle 
equation while the other solves the Vlasov equation, 
which is nothing else but an expression for the Liouville 
conservation of phase-space density seen by a stationary 
observer. In the second approach, the motion of the beam 
is described by a superposition of modes, rather than a 
collection of individual particles. 

The first formalism was used by Courant and Sessler 
to describe the transverse coupled-bunch instabilities, 
extending the theory developed by Laslett, Neil and 
Sessler for continuous beams. Courant and Sessler 
studied the case of rigid (point-like) bunches, i.e. bunches 
oscillating as rigid units, and they showed that the 
transverse electromagnetic coupling of bunches of 
particles with each other can lead (due to the effect of 
imperfectly conducting vacuum chamber walls) to a 
coherent instability. The physical basis of the instability is 
that in a resistive vacuum tank, fields due to a particle 
decay only very slowly in time after the particle has left 
(long-range interaction). The decay can be so slow that 
when a bunch returns after one (or more) revolutions it is 
subject to its own residual wake field which, depending 
upon its phase relative to the wake field, can lead to 
damped or anti-damped transverse motion. For M equi-
populated equi-spaced bunches, M coupled-bunch mode 
numbers exist ( 1...,,1,0 −= Mn ), characterized by the 
integer number of waves of the coherent motion around 
the ring. The bunch-to-bunch phase shift φ∆  is related to 
the coupled-bunch mode number n  by Mn /2πφ =∆ . 
Pellegrini and, independently, Sands then showed that 
short-range wake fields (i.e. fields that provide an 
interaction between the particles of a bunch but have a 
negligible effect on subsequent passages of the bunch or 
of other bunches in the beam) together with the internal 
circulation of the particles in a bunch can cause internal 
coherent modes within the bunch to become unstable. 
The important point here is that the betatron phase 
advance per unit of time (or betatron frequency) of a 
particle depends on its instantaneous momentum 
deviation (from the ideal momentum) in first order 
through the chromaticity and the slippage factor. The 
betatron phase varies linearly along the bunch (from the 
head) and attains its maximum value at the tail. The total 
betatron phase shift between head and tail is the physical 
origin of the head tail instability. A new (within-bunch) 
mode number ...,1,0,1..., −=m , also called head-tail 
mode number, was introduced. This mode describes the 
number of betatron wavelengths (with sign) per 
synchrotron period. It can be obtained by superimposing 
several traces of the directly observable average 
displacement along the bunch at a particular pick-up. The 
number of nodes gives the mode number m . 

The work of Courant and Sessler, or Pellegrini and 
Sands, was done for particular impedances and oscillation 
modes. Using the Vlasov formalism, Sacherer unified the 
two previous approaches, introducing a third mode 
number ...,1,0,1..., −=q , called radial mode number, 
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which comes from the distribution of synchrotron 
oscillation amplitudes. The advantage of this formalism is 
that it is valid for generic impedances and any high order 
head-tail modes. This approach starts from a distribution 
of particles (split into two different parts, a stationary 
distribution and a perturbation), on which Liouville 
theorem is applied. After linearization of the Vlasov 
equation, one ends up with Sacherer’s integral equation 
or Laclare’s eigenvalue problem to be solved. Because 
there are two degrees of freedom (phase and amplitude), 
the general solution for the single-bunch motion is a 
twofold infinity of coherent modes of oscillation 
( ...,1,0,1...,, −=qm ). For protons a parabolic density 
distribution is generally assumed, and the corresponding 
oscillation modes are sinusoidal. For electrons, the 
distribution is usually Gaussian, and the oscillation modes 
are described in this case by Hermite polynomials. In 
reality, the oscillation modes depend both on the 
distribution function and the impedance, and can only be 
found numerically by solving the (infinite) eigenvalue 
problem. However, the mode frequencies are not very 
sensitive to the accuracy of the eigenfunctions. Similar 
results are obtained for the longitudinal plane. 

The part of this paper discussing the beam instability 
mechanisms is a summary of Ref. [3] where more details 
are given (analytical predictions, benchmarking with 
some instability codes, and experimental results). Many 
references, which I will not quote again here for space 
considerations, are given there. 

IMPEDANCE 
The Fourier transform of the wake field is called the 

impedance. The idea of representing the accelerator 
environment by an impedance was introduced by Sessler 
and Vaccaro [4]. As the conductivity, permittivity and 
permeability of a material depend in general on 
frequency, it is usually better (or easier) to treat the 
problem in the frequency domain. 

Both longitudinal and transverse resistive-wall 
impedances were already calculated forty years ago by 
Laslett, Neil and Sessler. However, a new physical 
regime is revealed by the LHC collimators. Small 
aperture paired with large wall thickness ask for a 
different physical picture of the transverse resistive-wall 
effect than the classical one. The first unstable betatron 
line in the LHC is around 8 kHz, where the skin depth for 
graphite (whose measured isotropic DC resistivity is 
10 µΩm) is 1.8 cm. It is smaller than the collimator 
thickness of 2.5 cm. Hence one could think that the 
resistive thick-wall formula would be about right. In fact 
it is not, as will be shown below. The resistive impedance 
is about two orders of magnitude lower at this frequency. 

A number of papers have been published recently on 
this subject, and are discussed in Ref. [5]. Zotter’s new 
result for the transverse resistive-wall impedance deduced 
from field matching [6] is compared to the result from 

Burov-Lebedev [7] in Fig. 1. A very good agreement is 
obtained between the two, without and with copper 
coating. In fact Zotter’s formalism unifies the approach of 
Burov-Lebedev for “low frequencies” (they made the 
approximation bc /<<ω ) and the approach of Bane for 
high frequencies [8], and it is also valid for any beam 
velocity (see Fig. 2). Note that for a flat chamber, 
Yokoya’s factors have to be used in both transverse 
planes, i.e. 8.012/2 ≈π  in vertical and 4.024/2 ≈π  in 
horizontal for a vertically flat chamber [9]. 

Figure 1: Comparison between Zotter’s and Burov-
Lebedev’s formalisms in the case of a 1m long round (flat 
in reality) LHC graphite collimator with a half gap of 
2 mm. Burov-Lebedev’s plots are in black: dots without 
and lines with copper coating (5 µm, with a resistivity of 
17 nΩm). The thickness of graphite is assumed to be 
infinite here. The real part of the impedance tends to zero 
at low frequency, while the imaginary part tends to a 
constant value. The classical “thick-wall” formula is 
plotted in purple (equal real and imaginary parts). 

Figure 2: Zotter’s results for the LHC, where 
69.7462=γ  and 1=β , and for the CERN PSB, where 

05.1=γ  and 3.0=β , to see the effect of a lower beam 
velocity. An AC conductivity is assumed here, 

( )τωσσ j+= 1/DCAC , where ps8.0≈τ  is the 
relaxation time. The high-frequency resonance near 
1 THz is in perfect agreement with Bane’s results [8] (the 
dots are used for the negative imaginary part of the 
impedance after the resonance). The curves for the lower 
beam velocity are in light green for the imaginary part of 
the impedance and in red for the real part. 
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TRANSVERSE INSTABILITIES 
Low Intensity 

At low intensity (i.e. below the intensity threshold 
discussed in the next section), the standing-wave patterns 
(head-tail modes) are treated independently. This leads to 
instabilities where the head and the tail of the bunch 
exchange their roles (due to synchrotron oscillation) 
several times during the rise-time of the instability. The 
complex transverse coherent betatron frequency shift of 
bunched-beam modes is given by Sacherer’s formula for 
round pipes. For flat chambers a quadrupolar effect has to 
be added to obtain the real part of the coherent tune shift, 
which explains why the horizontal coherent tune shift is 
zero in vertically flat chambers. As an example, a head-
tail instability with mode 10=m  is shown in Fig. 3. 

 
 
 
 
 
 
 

Figure 3: Signal from a radial beam position monitor 
during 20 consecutive turns observed in the CERN PS at 
1.4 GeV kinetic energy in 1999. Time scale: 20 ns/div.  

High Intensity 
As the bunch intensity increases, the different head-

tail modes can no longer be treated separately. In this 
regime, the wake fields couple the modes together and a 
wave pattern travelling along the bunch is created: this is 
the Transverse Mode Coupling Instability (TMCI). The 
TMCI for circular accelerators has been first described by 
Kohaupt in terms of coupling of Sacherer’s head-tail 
modes. This extended to the transverse motion, the theory 
proposed by Sacherer to explain the longitudinal 
microwave instability through coupling of the 
longitudinal coherent bunch modes. The TMCI is the 
manifestation in synchrotrons of the Beam Break-Up 
(BBU) mechanism observed in linacs. The only 
difference comes from the synchrotron oscillation, which 
stabilizes the beam in synchrotrons below a threshold 
intensity by swapping the head and the tail continuously. 
In fact, several analytical formalisms exist for fast 
(compared to the synchrotron period) instabilities, but the 
same formula is obtained (within a factor smaller than 
two) from five, seemingly diverse, formalisms in the case 
of a Broad-Band (BB) resonator impedance ( 1=rQ ): 
(i) Coasting-beam approach with peak values, (ii) Fast 
blow-up, (iii) BBU (for 0 chromaticity), (iv) Post head-
tail, and (v) TMCI with 2 modes in the “long-bunch” 
regime (for 0 chromaticity). Two regimes are indeed 
possible for the TMCI according to whether the total 
bunch length is larger or smaller than the inverse of twice 

the resonance frequency of the impedance. The intensity 
threshold can be increased in the “long-bunch” regime by 
increasing the longitudinal emittance and/or the 
chromaticity. The coherent synchrobetatron resonances, 
important in large machines, are not discussed here. 

 
 

 
 
 
 

 

Figure 4: Fast instability observed in the CERN PS near 
transition (~6 GeV total energy) in 2000. Single-turn 
signals from a wide-band pick-up. From top to bottom: Σ, 
∆x, and ∆y. Time scale: 10 ns/div. The head of the bunch 
is stable and only the tail is unstable in the vertical plane. 
The particles lost at the tail of the bunch can be seen from 
the hollow in the bunch profile. 

LONGITUDINAL INSTABILITIES 
Low Intensity 

The same formalism as in the transverse plane can be 
used. An additional complication comes here from the 
Potential-Well Distortion (PWD) induced by the 
imaginary part of the longitudinal coupling impedance, 
which has to be taken into account and which makes the 
synchrotron frequency ( i

sss ωωω ∆+= 0 ), the bunch 
length and the momentum spread depend on the bunch 
intensity. Below the intensity threshold discussed in the 
next section, the bunch length is deduced from emittance 
(momentum spread) conservation for protons (leptons). In 
addition, there is also a synchronous phase shift, which is 
usually a small effect, due to the real part of the 
longitudinal coupling impedance. These two effects apply 
to the stationary distribution. Taking into account these 
effects, a new stationary distribution is defined. Around 
the new fixed point, the same method as in the transverse 
plane can be used. A perturbation is applied, and the 
longitudinal modes are deduced from the linearized 
Vlasov equation. The complex longitudinal coherent 
synchrotron frequency shift of bunched-beam modes is 
given by Sacherer’s formula, and similar pictures as the 
one of Fig. 3 can be observed for the longitudinal profile. 
As far as frequencies are concerned, coherent and 
incoherent effects subtract. The coherent dipole (rigid 
bunch) is not affected by a constant reactive impedance 
since it carries the voltage distortion with it. 

 
High Intensity 

In the longitudinal plane, the microwave instability for 
coasting beams is well understood. It leads to a stability 
diagram, which is a graphical representation of the 
solution of the dispersion relation (taking into account the 
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momentum spread) depicting curves of constant growth 
rates, and especially a threshold contour in the complex 
plane of the driving impedance. When the real part of the 
driving impedance is much greater than the modulus of 
the imaginary part, a simple approximation, known as the 
Keil-Schnell (or circle) stability criterion, may be used to 
estimate the threshold curve. For bunched beams, it has 
been proposed by Boussard to use the coasting-beam 
formalism with local values of bunch current and 
momentum spread. A first approach to explain this 
instability, without coasting-beam approximations, has 
been suggested by Sacherer through Longitudinal Mode-
Coupling (LMC). The equivalence between LMC and 
microwave instabilities has been pointed out by Sacherer 
and Laclare in the case of BB driving resonator 
impedances, neglecting the PWD. Using the mode-
coupling formalism for the case of a proton bunch 
interacting with a BB resonator impedance, and whose 
length is greater than the inverse of half the resonance 
frequency, a new formula has been derived taking into 
account the PWD due to both Space-Charge (SC) and BB 
resonator impedances. The result is depicted in Fig. 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Stability diagram for the LMC instability below 
and above transition respectively for a proton bunch. The 
Keil-Schnell circle is represented by the dashed curve. 

 
The threshold without space-charge is ~2 times higher 

below than above transition as also found by Ng [10]. For 
lepton bunches, which are usually much shorter than 
proton bunches, space charge is negligible and the 
intensity threshold increases with decreasing bunch 
length (in the “short-bunch” regime), which may explain 
why the classical instability threshold has been exceeded 
in some lepton machines. Experimentally, the most 
evident signature of the LMC instability is the intensity-
dependent longitudinal beam emittance blow-up to 
remain just below the threshold. 

STABILIZATION METHODS FOR THE LOW-
INTENSITY CASES 

Transverse Landau Damping 
The Landau damping mechanism from octupoles leads 

also to a stability boundary diagram in the “complex tune 
shift plane”. The transverse coherent tune shift given by 
Sacherer’s formula (for a round pipe), a complex 
quantity, is then plotted in this diagram as a single point. 
If this point lies on the inside of the locus (the side which 
contains the origin), the beam is stable. The stability 
diagrams for the 2nd order, 15th order and Gaussian 
distribution functions [3] are plotted in Fig. 6 for the case 
of the LHC at top energy (7 TeV) with maximum 
available octupole strength. The transverse beam profiles 
corresponding to the 2nd order, 15th order and Gaussian 
distribution functions extend up to  ~3.2σ, 6σ (which 
should be the case in the LHC due to the collimators 
setting), and infinity, respectively. 

 
 

 
 

 

 

 

 

 

Figure 6: Stability diagrams (positive and negative 
detunings) for the LHC at top energy (7 TeV) with 
maximum available octupole strength, for the 2nd order 
(dashed curves), the 15th order (full curves), and the 
Gaussian (dotted curves) distribution. 
 

The influence of space-charge nonlinearities on 
Landau damping has first been studied by Möhl and 
Schönauer for coasting and rigid bunched beams. Later 
Möhl extended these results to head-tail modes in 
bunched beams. The basic results of these studies are that 
in the absence of external nonlinearities, the space-charge 
nonlinearities have no effect on bean stability, as the 
incoherent space-charge tune spread moves with the 
beam. When octupoles are added, the incoherent space-
charge tune spread is “mixed-in,” and in this case the 
octupole strength required for stabilization can depend 
strongly on the sign of the excitation current of the lenses. 
Stability diagrams in the presence of both octupole and 
space-charge nonlinearities are discussed in Ref. [3]. 
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Longitudinal Landau Damping 
 By increasing the synchrotron frequency spread S , 

i.e. by increasing the bunch length, the coherent 
synchrotron frequency of the dipole mode 11cω , which 
was equal to the low-intensity synchrotron frequency 

0sω  without synchrotron frequency spread, moves closer 
and closer to the incoherent band (stable region). The two 
possible cases are represented in Fig. 7, which was 
obtained following Besnier’s approach (who considered a 
parabolic distribution function, which introduces some 
pathologies in the stability diagram due to its sharp edge): 
the case of a capacitive impedance below transition or 
inductive impedance above transition corresponds to 

0>U  (the coherent synchrotron frequency shift has been 
written VjUl −=∆ 1,1ω ) and 0<∆ i

Sω  (and thus 
0ss ωω < ), and the case of a capacitive impedance above 

transition or inductive impedance below transition 
corresponds to 0<U  and 0>∆ i

Sω  (and thus 
0ss ωω > ).  

 
 
 
 
 
 
 
 
 
 
 

 
Figure 7: Evolution of the coherent synchrotron 
frequency for the dipole mode with respect to the 
incoherent frequency spread. 
 

Motions tje ω∝  are considered, which means that the 
beam is unstable when 0>V  (V is called the instability 
growth rate). The usual case where the resistive part of 
the impedance is small compared to the imaginary part is 
assumed, i.e. UV << . Beam stability is obtained when 

11cω  enters into the incoherent band. In both cases, the 
stability limit is reached for 4=k , i.e. ||4 US = , which 
is Sacherer’s stability criterion. 
 
Feedbacks 

An electronic feedback system is often used to damp 
coupled-bunch instabilities both in the longitudinal and 
transverse planes. Recently, it was found to help also for 
the (single-bunch) head-tail instability in the Tevatron. 

    
Linear Coupling Between the Transverse Planes 

In the absence of both linear coupling and frequency 
spread, and below the mode-coupling threshold, the 
stability condition for the mth head-tail mode is that the 
growth rate is negative in each transverse plane.  In the 

presence of linear coupling, the necessary condition for 
stability of the mth mode is that the sum of the transverse 
instability growth rates is negative (note that if this is 
verified, it is verified for any intensity). If this is the case, 
then it is possible to stabilize this mode by increasing the 
skew gradient and/or by working closer to the coupling 
resonance lQQ vh =− , where vhQ ,  are the transverse 
coherent tunes and l  is any integer [see Fig. 8 (left)]. 
Note that the PS beam for LHC is stabilized by linear 
coupling only (i.e. with neither Landau octupoles nor 
transverse feedback). Furthermore, linear coupling can 
also have a beneficial effect on the TMCI. 

In the presence of both octupoles and linear coupling 
between the transverse planes, the situation is more 
involved. To clearly see the effect of linear coupling on 
Landau damping let’s consider the case of a beam 
without frequency spread in the horizontal plane and 
without wake field in the vertical one. It is seen from 
Fig. 8 (right), that below and above certain values of 
linear coupling strength, stabilization is impossible 
whereas for intermediate values stabilization is possible 
even with some tune split lQQ vh −− . If the coupling is 
too small, there is not enough Landau damping 
transferred to the unstable plane. If the coupling is too 
large, the coherent frequencies fall outside the incoherent 
frequency spreads and thus prevent Landau damping. An 
optimum coupling has therefore to be found. 

 
 
 
 
 
 
 
Figure 8: (Left) Shape of the stable region in the presence 
of linear coupling, but without frequency spread, when 
the sum of the transverse instability growth rates is 
negative; ( )lK 0

ˆ  is the lth Fourier coefficient of the 
skew gradient. (Right) Shape of the stable region in the 
presence of both linear coupling and frequency spread, 
for the case where the vertical spread is equal to two 
times the horizontal growth rate (for other values similar 
results are obtained); ( ) 2

0
ˆ lK∝κ . 
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