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Abstract

Radially polarized radiation is amplified by a free
electron laser (FEL) in which the undulator is an ion
channel with uniform density.  For long betatron
wavelengths and low gain per pass, the gain at a given
distance from the axis is three-eighths the gain of a
periodic ion channel laser with the same wiggler
parameter. For amplification of short wavelengths by an
ultrarelativistic electron beam, a uniform-density ion
channel requires a much higher ion density than a periodic
ion channel laser.

INTRODUCTION

Consider a cold, uniform, round electron beam
propagating in a round ion channel of constant density.
When the ion density in the laboratory equals the electron
density times 1/y* (where v is the beam’s relativistic
factor), force-free beam transport may be obtained [1]. If
a beam is injected off-axis, caculations indicate that
transverse “betatron” oscillations of the beam centroid
may amplify linearly polarized radiation to create an “ion
channel laser” [2, 3, 4]. When a mismatched beam is
injected on-axis, the beam undergoes radial betatron
oscillations that are stationary in the laboratory [5].

We show that radially polarized radiation may be
amplified by these radial oscillations, to create a radially
polarized ion channel laser. In the low-gain-per-pass,
long betatron-wavelength limit, the amplification is three-
eighths that of a periodic ion channel laser [6] with the
same transverse quiver velocity.

RADIAL MOTION

To model “force” bunching [3, 4, 6], radiation is
included in the transverse dynamics. We consider a cold
beam with nonrelativistic electron motion in the beam
frame. This requires that the ion channel act as an
undulator, in which an electron’s velocity deviates by less
than the angle 1/By from the axis, where § > 0 is the beam
velocity divided by the speed of light c.

Consider a stationary ion channel with entrance at zo, =
0, whose density in the laboratory frame is njq, for 0 <
Za < Ligp @nd r <r.. Here, z, and r are axia and radia
coordinates, while L5, and r. are the channel’s length and
radius. In the frame moving with the beam as it enters the
undulator, the ion channel density is ny = N, Where
By> 0 and v, describe the beam’'s axia velocity. For
r <r., theradial electric field from the ion channel is

E.(r) = —engr/ 2¢, @
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where e < 0 is the electron charge and & is the
permittivity of free space. The magnetic field in the beam
frameisin the azimuthal (¢) direction, with B, = —E./c.

We now consider the amplification of weak radiation
when the beam undergoes radia betatron oscillations that
are dtationary in the laboratory. For a radialy polarized
wave traveling forward, the radial electric field in the low-
gain-per-pass limit is

E (r,zt) = Eg(r)coslk, z— ot + 0, ). %)

The azimuthal magnetic field B, eguals E,/c, with wave
number k. > 0, phase ¢, , and frequency a, = ck, > 0.

Consider a perturbation of the annular beam segment
that enters the ion channel when (z, t) = (0,0) and
oscillates about equilibrium radius r. When the perturbed
axial motion is a uniform drift with nonrelativistic
velocity v, the radial perturbation 4(t) obeys

r+d

@ ezf 0ne(r’, z,t)2nr’dr’

ef,, Pivo
+m[ +C]Ec(r+8,z,t) 3

dt2  2nmeg(r +3)
+ E[1—EjEr (r+8,z1),
m\ ¢

where misthe electron mass. The first term describes the
radial electric field from the beam when the laboratory-
frame betatron wavelength greatly exceeds the beam
radius. The terms proportional to vy result from the
magnetic fields B, and B,. For laminar flow,

J' r+ri(r', zt)2rr’dr’ is @ constant of motion equaling
0

(L+Bvo/c)ngrr®. To lowest order in §, eq. (3) gives
LZS — _ezno[1+ B”v()j 8

dt>  me, c 4
e, v

—j1-=2 k. z— ot .
+m( chOCOS( Z—ot+¢,)

(For brevity, we have suppressed the dependence of
functions upon r in our notation.) According to eg. (4),
the radial velocity of an electron is the sum of a betatron
oscillation and forced oscillation from the radiation. The
betatron oscillation’s radial velocity is

v.(zt)=-4,cs n["’B(1+ B”vo/c)”zt + ¢B] , (5)
where g = (ng€’/mey)’? is the electron plasma
frequency. In the laboratory, the betatron wavelength is
Ap1ap = (2nByyic/op)(1+vo/Bic-Bivo/2c) ~ 2nfyclay; the
betatron frequency is Dp1ab = () (L+BMo/c—Byvo/2¢) ' =
(JJB/Y” = (ni.|abe2/eomy||) 2 Letting kBEB"(’OB/ZC define an
effective wavenumber for the betatron oscillations yields

Ve(zt) = -8, csin(kgz + wgt + 0 ) - (6)
Since Ap.1a depends upon the electron’s axial velocity, ks
# s /Byc. The amplitude &, and phase ¢y are determined
by the initial conditions of the beam segment (i.e., radius
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and radial velocity). Our assumption of nonrelativistic
electron velocities in the beam frame requires 3,, << 1.

The forced oscillation from the radiation obeys

v, (zt) = a,csin(k. z— ot + ¢, ), (M
with
_ el-vo/c)in By ®)
mo(dy” - %)

In eq. (8), &, =, (1-vy/c) and ay = wyll+Byvy/2c) are
the angular frequencies of the radiation and betatron
oscillations experienced by an electron traveling with
velocity vo. Notethat a, o (dy —@,) ™

A time-dependent axial velocity may be approximated
to arbitrary accuracy by constant-velocity segments.
Thus, by letting the velocity vq in eg. (8) equal the average
axial velocity in the undulator, egs. (6)—(8) approximately
describe small time-dependent axial velocities.

AXIAL MOTION

To describe “inertial” bunching, radiation isincluded in
the axial dynamics [3, 4, 6]. We consider the Compton
regime where the axia space-charge forces may be
neglected. An electron whose initial axia position z is 0
and radiusisr obeys, to lowest order in the radiation field

E =SB+ VB +2vB,, )

dt> m m m
where radius = r on the right hand side (RHS). The
solution with initial conditions z(0) = dz/dt(0) = O is the
sum of three terms describing radiation-independent axial
motion, inertial bunching, and force bunching. The
radiation-independent motion obeys d?z,/dt? = (e/m)v, B,
where z = vyt on the RHS of the equation, with vg
equaling the average axial velocity in the undulator. The
solution with initial conditions zy(0) = dz,/dt(0) = 0 is

e . . .
7(t)= Erdy [ n(wﬁt+¢ﬁ)—mﬁtcos¢ﬁ—sn¢5] . (10
2me & B
Equation (10) givesthe average axial velocity as
_ —e’ngBa,, r cosoy _ —opByAurcosgy (11)

2me ooy 2
Our assumption of nonrelativistic velocities in the beam
frame requires that the plasma skin depth in the beam
frame clwg >> By4,r/2.  In the laboratory, this
requirement is Ag.iap >> 7 &, ) I-

The inertial bunching term [3, 4, 6] results from the
axial radiation force on an electron, obeying d%z/dt? =
(e/mv.B; where z = 7/(t) on the RHS. For §, <<1,
approximating z(t) = Vot on the RHS for the fundamental
FEL mode gives the solution with initial conditions z (0)
=dz /dt(0) = 0:

sin(m+t +¢[5 -0, )_Sin(¢ﬁ -0, )—(D+tCOS((|)ﬁ _q)r)

()= 25 @
2m . sin(m,t +0p +¢r)—sin(¢5 +0, )—m,tcos(q)ﬁ +¢r)
2
)

(12)
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where o, =@z +d, and o_=az-& . For effective
amplification of radiation, |w_ | << o, , SO that
2(0)= 25
2mm

) [sin(o.t + 05 +0,)-sin(py +0, ) - o teoslo, +o,)]-

(13)

The force bunching term [3, 4, 6] results from the
transverse radiation force on an electron, obeying d?z /dt?
= (e/m)v; B, where z = 7y(t) on the RHS. For 3, <<1,

approximating zy(t) = vot on the RHS for the fundamental

FEL mode gives the solution with initial conditions z (0)

= dz/dt(0) = 0:
z(t)= m[sn(wt 0 )+sing, — i tcosy, |-

2meow,

In contrast to a periodic ion channel laser [6], the inertial

bunching term does not equal that from force bunching

for §,<<1

(14)

GAIN
The change in an electron’s energy from interaction
with the radiation obeys
d
d—f =evE +evE , (15)

where v, , V. and E, are evaluated at radius r and the axial
position z(t) calculated in the previous section. The
change in an average electron’s energy is given by
averaging over the phase of the radiation ¢,. To order
Eo? the first term on the RHS does not contribute to this
average. When motion in the beam frame is
nonrelativistic (c/ap >> By 4, r/2), eq. (15) becomes

(der), =(evE)

(zcosg, >¢r {_

+<ZSin(])r>¢ |:eawCE0 [k gn(u) t+¢B) k,sin(co+t+¢ﬁ)]} ,

o
R0y cos(e t+5)+k_coslo,t+ 0y )]} (16)

where k, = ks +k and k_=k; —k, . Forinertial bunching,
eg. (13) gives
(z coso, ) _ Sk [sm((n t+¢B) sin%—(n,tcosq)ﬁ]
(I) 4|'T[1), (17)
(zsing, >¢r = fnonoz [cos(o),t + ¢B)_ cosdp + o),tsinq)ﬁ].
For force bunching, eq. (14) gives
(z cosg, )¢ B"e Mo —(sindy,t—at)
megd, (18)
. - Bne Noa, I
(% S|n¢r>¢r W( St —1).

Let Ae= I OT(de/dt) 0 dt be the average energy change

per electron from interacting with radiation. Here, T is
the ion channel transit time in the beam frame. The
average energy change Ae is the sum of the contributions
from inertial and force bunching. For |w_|<<w,, €ds.

(16) and (17) give theinertial bunching contribution
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8m 0 °T®
while egs. (16) and (18) give the force bunching
contribution
— &'Ey’4,Bynork, T3[ cosoy(1-cosw. T - Tsinw.T)
A% = 16meqo, (0. T)? Lsinq)ﬁ(sian—mTcosmT) }
(20)
In the beam frame, the energy transferred to the forward
wave within a transverse area A during a time ty is
—noABctoAe for vo << c¢. The time-averaged Poynting
vector of the radiation is < S>=ge,cEy7/2, with energy
density < S>/c. Since the relative velocity between the
forward wave and undulator is (1+Bj)c, the
electromagnetic energy passing through the undulator is
(< S>/c)(1+B))cto A. The radiation energy gain per pass at
radiusr therefore obeys
. —ngABctde (- 2By | nyAe
gain= = .
(S)@+By) toA [1+ By ] £oEo°
The gain is the sum of the gain from inertial bunching and
the gain from force bunching. For y >> 1, the gain from
inertial bunching is given by egs. (19) and (21)

2 4 23 .
gain, = neek,ca, T?| 2—2cosw_T —o_Tsino_T . ()
8m€0 (x)_BT3
In the laboratory frame, the maximum transverse
velocity divided by c is obtained from the radial and axial
velocitiesin the beam frame when |v. | islargest:
ay &y

BL—Iab = & = 2 =—
Y yll-Barwgcosog/2c] ¥

where a, = &, isthewiggler parameter. For y>> 1, k.
= kg + ki = L.5yjmp.a /C, Where g4 is the laboratory-
frame betatron frequency. Thus, the gain from inertia
bunching at radius r is given to lowest order in the
wiggler parameter a,, as
3N 1o €°0p 1y By L | 2— 20080 T - Tsinw T
16me, cy® (0T

_22F 25 2 3(o_ _ ;
Ag; = e“Eya, ¢k, T [2 2cosa_T m_Tsmoo_T} (19)

(21)

(23)

gain; =

(24)
where ngy, is the e-beam density and Ly is the ion
channel’ s length measured in the laboratory frame.

For y>> 1, the gain at radius r from force bunching is,
to lowest order in a,,,

38, T Y0 a0 Liay | COSp (1-cosow. T —w_Tsinw.T)
T 3¢t (@T) |+singy (Sno.T-w.Tcosw.T) |
(25)
Note that gain; depends upon the amplitude and phase of
the betatron oscillations, while gain; depends only upon
their amplitude.
Here,

O.T =[0p_1ap 10+ Vy/ 20) — 0 (1= Vo /C)/ 2y Ty, (26)
where Tia, = Liap/ByC is the ion-channel transit time and
W 1S the radiation’s angular frequency in the
laboratory. For an ultrarelativistic beam undergoing
many betatron oscillations, maximum gain occurs for

gaing
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ZYZwB—Iab
1-3vy/2c @)

For y >> 1, |gain; /gain; | iS ~ryog.a/2Cay, SO that the
gain from inertial bunching dominates when a, >>
nrylhgaap-  Thus, for a wiggler parameter comparable to
unity, inertial bunching dominates for long betatron
wavelengths obeying Ag.a >> mry. In this case, the gain
is 3/8 times the gain of a periodic ion channel laser [6] or
planar magnetostatic undulator with the same quiver
velocity, while the wavelength experiencing maximum
gainis modified by the value of vy in eq. (27). Thegainis
smaller than that of a periodic ion channel laser for two
reasons. First, force bunching is small for long betatron
wavelengths, while it nearly equals the inertial bunching
in a periodic ion channel laser. Second, the laboratory
betatron wavelength depends upon the beam energy, so
that kg = Byog/2¢ < wg/Byc. This reduces the gain from
inertial bunching [2, 3, 4].

When y>> 1 and Ag. s < 7ry, the above formulas apply
when the beam-frame velocities are nonrelativistic (a,,

<< Ag.ap/Tery), in which case force bunching dominates.

O _jap = = Zyzmﬁ—lab :

DISCUSSION

A constant-density ion channel, in which the phase-mix
damping of betatron oscillations is negligible, may be
used to amplify radialy polarized radiation. For an
ultrarel ativistic beam with a long betatron wavelength, the
gain is three-eighths times the gain of a periodic ion
channel laser with the same wiggler parameter.

A periodic ion channel with wiggler parameter
comparable to unity and period A4 equaling ten times
the beam radius requires an ion density in the laboratory
of ~40mesmc?/e® Ay a0’ for Y>> 3[6]. A constant-density
ion channel with &g equaling ten times the beam radius
reguires an ion density that is a factor of my/10 times as
large. Thus, for ultrarelativistic beams, amplification of
short wavelengths may be achieved with a much smaller
ion density if a periodic ion density channel is used.
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