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Abstract 
3D computing simulations have been performed at 

ORNL to study the magnetic field distributions of two 
injection chicane dipoles in the SNS ring.  The simulation 
studies have yielded the performance characteristics of the 
dipoles and generated magnetic field data in three 
dimensional grids. Based on the simulation data, a 3D 
multipole expansion of the chicane dipole field, consisting 
of generalized gradients and their derivatives, has been 
made.  The expansion is quasi-analytical by fitting 
numeric data into a few interpolation functions.  A 5th-
order representation of the field is generated, and the 
effects of even higher order terms on the field 
representation are discussed. 

INTRODUCTION 
In the Spallation Neutron Source (SNS) being built in 

Oak Ridge National Laboratory (ORNL) a 1 GeV H- 
beam from its linac is injected into an accumulator ring to 
produce a proton beam by stripping off electrons in low 
magnetic field.  In the injection region there are four DC 
magnetic dipoles (D1 to D4) in a chicane structure, which 
controls the beam orbit.  The striping foil is located at the 
edge of the second dipole (D2), whose field is very 
critical to the injection operation. D2 and D3 are very 
close, and they have complementary pole tip structures.  

  The dipoles are designed by BNL (Brookhaven 
National Lab) [1] and their design simulation file does 
exist.  It is to our convenience to start independent 
simulations of the dipoles at ORNL, which yield their 
performance characteristics and generate field distribution 
in 3D grids for tracking study of beams.  But, the data file 
occupies a few hundred meg-bytes memories and it is 
hard to manage the data in subsequent work.  Therefore, 
we expand the magnetic field into 3D multipoles based on 
the simulation data.  The 3D multipole expansion 
describes the magnetic field in terms of harmonic and 
pseudo-harmonic components and is analytical in nature.  
The field at any point within a cylindrical volume about 
the z-axis of the magnets can be calculated by 
approximate formula, such as a 5th-order representation 
presented in this paper. 

3D COMPUTING SIMULATIONS 
The simulation code is OPERA3D/TOSCA [2].  The 

simulation model as shown in Fig. 1 is built by the 
OPERA3d package “Modeller” rather than “Pre-
Processor”, and is constructed according to the BNL 
design drawings and parameters [3].  In the setup the 
dipoles D2 and D3 are energized at 2140 A and 1690 A, 
respectively.  These currents should be close to the 
operation values for a 1 GeV beam. 

 
 

Figure 1: Simulation model of chicane dipoles. 

The magnetic field on the z-axis from the simulation is 
plotted in Fig. 2.  The integrated field and the harmonic 
contents are analyzed by a rotating Cartesian patch, 
similar to an un-bucked winding in a Halbach coil in 
accelerator magnet measurements [4].  Figure 3 shows the 
harmonic distribution. The blue and green bars are 
calculated for the D2 region and D3 region respectively 
with a separation point at z=93.87 cm. The red bars are 
calculated for the entire length of both D2 & D3, which 
are much smaller due to opposite phases of the 
quadrupole, octupole, and sextupole in the two dipoles,   

 
Figure 2: Magnetic field along the z-axis. 

 
Figure 3: Harmonic amplitudes of chicane dipoles. 

The stripping foil is located at x=0, y=2 cm and z=30.7 
cm, which is around the edge of D2. In Table 1 we list 
these parameters and compare the simulation results 
between ORNL and BNL [5].  The agreement looks good.   
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Blue:  Harmonics measured from z=-240 cm to 93.86752 cm (in D2 region)

Green: Harmonics measured from z=93.86752 cm to 420 cm (in D3 region)

Red:  Harmonics measured from z=-240 cm to 420 cm (cover both D2 & D3)
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Table 1:  Field distribution around stripping foil  
 ORNL  BNL  
D2 Current (A) 2140 2168
D3 Current (A) 1690 1716
By (kG) 2.5244 2.50
Bz (kG) -0.5256 -0.532
Btotal (kG) 2.5785 2.556
Tan-1(Bz/By) (rad.) -0.2053 -0.2
By integral (G-cm) 241463.53 237997
( - infinity to foil)   
By integral (G-cm) 263163.88 261751
( foil to + infinity)   

3D MULTIPOLE EXPANSION 
Technique [6,7] 

First, from OPERA3d postprocessor we calculate and 
Fourier-decompose a field component, say Br, on the 
surface of a cylinder of radius R, co-axial with the dipoles 
axis: 
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Here ( )kR,~
mB  and ( )kR,~

mA  are the Fourier 

transforms of Bm(R,z) and Am(R,z), and Im(x) is the 
modified Bessel function of the first kind of order m.  The 
field components at any point within the cylinder can be 
constructed as 
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Here α is either s for the sine term or c for the cosine 
term, and the two terms add together for each component. 

On-axis gradients 
The generalized gradients C0’(z), C1,s(z), and C1,c(z)  

represent the on-axis magnetic field components Bz(z), 
By(z), and Bx(z) at x=y=0, respectively.  This property can 
be employed to verify the validity of the 3D multipole 
expansion by comparing the generalized gradients directly 
to the simulation data of the on-axis fields.  As shown in 
Figs. 4-6, the agreement is very good. 

 

 

 

 

 

 

 

 

 

Figure 4: By at x=y=0 versus z. 

 

 

 

 

 

 

 

 

 

Figure 5: Bz at x=y=0 versus z. 

 

 

 

 

 

 

 

 

 

 

Figure 6: Bx at x=y=0 versus z. 

A 5th-order representation 
The magnetic field at any point inside the cylinder can 

be calculated from the generalized gradients.  In practice, 
a cut to a certain order has to be made.  A 5th-order 
representation of the magnetic field covers the multipoles 
up to the regular dodecapoles and pseudo-dodecapoles.  
The explicit expressions for this representation are left out 
due to the page limit, but they can be obtained in a 
straight forward way by keeping only m=0-6 terms in the 
field equations given above.  In this case, a total of 13 
generalized gradients are required and they can be stored 
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in computer as interpolation functions for subsequent 
calculations.   In this way much less memories are needed 
and the field calculations become quasi-analytical.  A 
comparison between the expansion results and the 
simulation data are shown in Figs. 7-10.  In general, the 
agreement is very good for small radius.  When it is far 
away from the axis, the discrepancy for some field 
components may get larger, and higher-order terms, such 
as up to 9th order, is required for better agreement, as 
shown in Fig. 10. 

 

 

 

 

 

 

 

 

 

Figure 7: By versus y at x=z=0. 

 

 

 

 

 

 

 

 

 

 

Figure 8: By versus x at y=z=0. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Bx versus y at x=z=0. 
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Figure 9: Bx versus x at y=z=0. 
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