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TRANSVERSE IMPEDANCE OF TWO-LAYER TUBE
M. Ivanyan®, A.V. Tsakanian, CANDLE, Y erevan, 375040, Armenia

Abstract

The exact analytica expressions for the multipole
longitudinal and transverse impedances of two-layer tube
with finite wall thickness are obtained. The numerical
examples for the impedances of the vacuum chamber with
laminated walls are given.

INTRODUCTION

The knowledge of the vacuum chamber impedance in
accelerators is an important issue to provide the stable
operation of the facility from the machine performance
and beam physics point of view [1,2]. To adjust the
technical (high vacuum performance, reduction of static
charge etc) and beam physics (resistive instability) issues,
the laminated walls of vacuum chamber parts are often
used in accelerators.

The two-layer circular tube is a good modd for the
small-gap undulator vacuum chamber with thin covered
walls. The exact solution for the monopole longitudinal
impedance of two-layer tube has been derived in [3]. In
this paper explicit analytical solution for longitudinal and
transverse multipoles has been obtained. The numerical
example for copper-NEG (non-evaporated getter) two-
layer tube impedanceis given.

MULTIPOLE EXPANSION

Consider the ultrareativistic point-charge moving
paralld to the axis of the uniform circular-cylindrical
structure. The transverse position of the charge is given

by the offset Iy and the polar angle ¢, = 0. The m-th
multipole term of longitudinal impedanceis given by [2]

Z, wl(o,r,r )=(rrs/b2)mZ”(m)(a))cosm¢ )

1l lg

where b isthetuberadius, I', @ aretheradial and polar

coordinates of the observation point and Z"(m)(a)) isthe

frequency-dependent term of multipole, sometimes also
identified as an impedance. The transverse mode is given
by Panofsky-Wenzel theorem [4].

THE PROBLEM
Let us consider the rdlativistic (V< C) plain disk (disk
radius &, =r,) moving with velocity vV aong the
uniform, circular-cylindrical two-layer tube of inner

radius a, (Fig.1). Thedisk centre coincides with the tube

axis and the disk radius corresponds to the charge offset.
The charge density in frequency « domain is then
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givenby (0, =10,.,=2):
_ q‘im e 12 (m+1)(r/r,)" cosmgp @)
ar2c

The boundary between two layers is located at I' = @,

p(m)

and the outer radius of thetubeis a,. Outside of the tube

is vacuum. In analogous to [1] the frequency-depend part
of impedance is independent from the disk radius and
hence valid for the point-like charge.
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Figure 1: Geometry of the problem.

SOLUTION

The cross section of the tube is divided into the five
concentric regions: 1) O<r <a, =r_ (vacuum), 2)
a <r<a,=b (vacuum), 3) a,<r<a, (first
layer), 4) a;<r<a, layer) and 5)
r =2 a, (vacuum). Due to current axial asymmetry the
fields radiated in the tube have all six components
E,,H, E,,H, and E ,H . Thefrequency domain
wave equation for longitudinal electrical and magnetic
components E_, H , in each region can be written as:

(second

AJ_ES) _ZizES) =] piZiz/kgi

AHY -x2HY =0 ©

where p, = p'™ isacharge density, p,., =0, &, are
the dielectric permeability, ¥, aretheradial propagation
constants, K=a@/V. In vacuum regions (i =1,2,5)

g =€, and ¥, =k/y=A1 with g, - the vacuum
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dielectric constant and ¥ - the Lorenz factor. Transverse
components are expressed by the longitudinal ones:

= ijiiz{vLEz_J‘Vﬂoézxvin} (4)
l__iJ_ = iji_Z{ﬁle + jv‘giézva_Ez}

where V | isatransverse part of the gradient operator,

and U, isamagnetic permesability of vacuum. The rhsof
the equation (3) for the eectrical component vanishes
everywhere except the beam region with non-zero charge
density p(m). Therefore the non-zero partial solution
exists only in the beam region. For the charge density
given by (2), itissmply E, =G, = jp(m) I ke,. The
solution of the homogeneous wave eguation in the beam
region, which includes the axis r =0, is only modified
Bessel functions of first kind since those of the second

kind diverge for argument zero. The longitudinal eectric
and magnetic fields in the beam region are then

EY(r)=F,I_(Ar)cosmp+G,
HY(r)=PRI (Ar)snmg

z

©)

In the subsequent regions 2,3,4, the longitudina field
components are given by superposition of modified
Bessdl functions of both kinds:
=FR(r)+GS(r)
HY=PR()+QS(r)

with F,G,,P,Q

functions R (r), S (r) combined as

R(r)=K,(a)nlrr)-1.(ra K, (i )
Si(r):Kr,n(Ziai)Im(Zi ) m(Z|a|)K (Z )

Transverse components (4) expressed with the help of
functions

R(r)= K (e ) nrr) -1 (e K (ar )
S/(r) =K (ra i (rr) =1 (e K (rar)
In the outer region (1 = 5) that extends to infinity, only

modified Bessd functions of the second kind are
admissible. Thelongitudinal fieldsin outer region isthen:

=234 (6)

unknown coefficients and the

()

(8)

The unknown coefficients F,,P (i =1..5), and
Q.G (1=234) ae defined by the matching
conditions. From five fied components
EZ,HZ,E(/,,H(/, and H, which should be matched at

transition boundaries, the four ones have been chosen for
basic equations system composition, providing the
matchingat r =a, (i=12,34):

ES) — E£i+l), H S) — H S-f—l)

Hg) _ HS+1), Hr(i) _ Hr(m) (10)
The fifth E(p component matching is follows
automatically.

LONGITUDINAL MULTIPOLES

The system (10) contains 16 linear equations with 16
unknown parameters. The common solution of this
system has a complex form and doesn’t present here.
Nevertheless, after putting m=0 and proceeding the
ultra-relativistic limit it transfers to the already obtained
results for monopole longitudinal mode [3]. Here we are
presenting the ultra-relativistic form of coefficient F,

valid for any m>0:

2™"m 2 m
Fi=-) [ m+z+a3mu—lj a
mEKYT" \ @) a
with
a’ a !
T L [;(&v] @
m+1 y: & €4 R,

where £, =€,+&; and the function V is the

combination of the Bessd functions of the first and
second kinds that can be analytically evaluated. The

anaytical presentation of function V is omitted in this
paper due to space limit.

The longitudinal component of eectric fild E,
obtained by substituting F, (11) into (9) and taking the
ultrardativistic limit of modified Bessel function:

= —jormala, (e kU ) (13)

The m™ multipole mode of the longitudinal impedanceis
then given by:

. -1

Z{™ (k) =-jZ,(akU) (14)

with Z, =377 €. For the singlelayer tube with

E, =FK,(4r), H, = PK, (ar) () infinity wall thickness (8, —> o0, £&=£,, ¥3= )
the impedance is modified to
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2
u--2
m+1

(15)

_ azz4K;(agz4)]
Kn(@,2,)

+
1+ %o f“ [m
Eola
which for |a,,7, [>> M turns to the well-known point-
charge truncated longitudinal multipole mode [1]:

U=a; (m+1)71 +a, (go +é&, )<Z4€0 )71 (16)

On Fig.2 the distributions of the longitudinal modes for
m=1,2,3 for stainless-sted (SS) tube with thin inner

copper cover (A=100nm) are presented. The
geometry of thetubeis: @, =2mm, a, =a, +A and
a, =4mm.

[¥]
[=1
[=]

Re Z{T(w) [} fm]
2

3000 10000 20000

f, GHz

30000  100000.

-100

Im Z{P (@) [£2 f m]
1
3

-130

=200

2000 5000 10000 20000

f, Gz

50000 100000.

Figure 2: Digtributions of real (top) and imaginary
(bottom) parts of the longitudinal modesfor m=1(solid),
2 (dashed) and 3 (dotted) for SS-copper tube.

TRANSVERSE MULTIPOLES

Transverse impedance is determined using Panofsky-
Wenzel theorem [4]:

mym

Z, n=kZM@V i{ rbzrnj cosmqo}

(17)

The transverse multipole mode frequency dependence is
described by the function Z"(m)k’l [Q]. In the ultra-
relativistic limit transverse mode is expressed via the

0-7803-8859-3/05/$20.00 ©2005 IEEE

coefficient F; (11). The distribution of the frequency

dependent part of the dipole (m=1) transverse
impedance is given in Fig.3. For comparison shown the
transverse impedances for copper and stainless-till tubes.
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Figure 3: Distribution of the real part of transverse dipole
mode (solid). Also shown: copper (dashed) and stainless-
sted (dotted) tubes truncated impedances.

As it follows from the Figure 3, the behaviour of the
transverse dipole mode impedance is the same as ones for
the longitudinal monopole mode [3] and conditioned by
the skin depth of inner layer. For the low frequencies the
impedance tends to the stainless-sted tube impedance and
in the opposite case closes to the copper tube impedance.

CONCLUSION

An exact solution for the longitudinal and transverse
impedance multipoles of the point-like charge in two-
layer circular tube with finite wall thickness is obtained.
The limiting cases for the single layer tube and tube with
infinity wall thickness are discussed aswell. The solution
is valid for both thin and thick layers with arbitrary
materials and wall thickness. These results can be used
for the small-gap undulator laminated vacuum chamber
calculation.

Authors express the thanks to Vasili Tsakanov for the
many stimulating discussions and help.
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