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Abstract 
The presented code is an advanced version of the code 

MBIM1 also presented at this conference and dealing 
with short bunches. The code MBIM2 analyses the 
stability of longitudinal coherent motion for arbitrary 
multibunch beams in storage rings without limitations on 
the bunch length or RF cavities wavelength, which is 
especially important for higher types of multipole 
synchrotron oscillations. The code implies also the 
possibility to consider coupling between different types of 
multipole synchrotron oscillations and Landau damping. 
In considered approach, the problem reduces to the 
eigenvalue problem for the linear algebraic equation 
system. The order of this system is equal to the number of 
bunches times numbes of multipole types times 
approximation order wich appears to be small (a few 
units) in most cases.  

INTRODUCTION 
The code MBIM1 (Multibunch Beam Instability, 

Multipole oscillations, version 1 for short bunches) for 
calculation of growth rates of coherent instabilities 
presented in [1] has two important restrictions. The first 
one is a short bunch approach, which allows to consider 
only surrounding structure impedances with wavelengthes 
much greater than the bunch length. The second one is the 
approach of small coherent frequency shifts in 
comparison with unperturbed frequency of coherent 
oscillations, which allows to consider different multipole 
types of synchrotron oscillations independently from each 
other and therefore, not considering bunch lengthening. 

In order to overcome these two restrictions the method 
used in [1] was developed for long bunches and realized 
in the code MBIM2 (version 2 - for long bunches) for the 
stability analysis of arbitrary multibunch beams multipole 
synchrotron oscillations (including the case of 
counterrotating beams). 

All details of derivation are given in [2]. 

 INITIAL POINTS 
As in [1], we follow here a method developed in [3] for 

symmetric beams, using a continuum model with the 
same restrictions as in [3], omitting the approach of short 
bunches: the sinusoidal oscillations in the absence of 
excitation are small; the perturbations of the distribution 
functions due to the interaction are small (as compared 
with the undisturbed distribution); the amplitude 
dependence of the synchrotron frequency is taken into 
account in the first approach of small amplitudes; the 
undisturbed distribution functions of all bunches are 

identical - gaussian, with the same length for all bunches, 
but their currents can be different; smooth focusing with 
the same betatron tune. 

 FINAL LINEAR SYSTEM OF EQUATION 
We start here from the system of integral equations for 

all harmonics of the synchrotron frequency for 
perturbations of distribution functions of all bunches as in 
[1] (eq.(1)), but keeping coupling between different 
multipole modes, which was neglected in [1]:  
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where ),( sJF l
n  is the n -th multipole harmohic of 

synchrotron oscillation for the perturbation distribution of 
the l -th bunch. 
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where )(0 Jf l  is the undisturbed distribution function of 

the l -th bunch, independent from time and phase, which 
is supposed to be the same (gaussian) for all bunches: 

)/(exp)2/1(=)( 000 JJJJf l −π ; Rb /2=0 σφ , R  

is the radius of the storage ring, bσ  is the r.m.s. bunch 

length (the same for all bunches); )( 0ωimsZ −  is the 
total impedance of the cavity reduced to the narrow gap; 

0ω  is the revolution frequency; jI  is the average current 

of the j -th bunch; )(JΩ  in the frequency of 
synchrotron oscillations (at zero current). 

But now, unlike [1], the factor ))(( Jins Ω+  is not 
moved into the denominator of the kernel (2), but will 
remain the factor at ),( sJF l

n  in (1), which simplifies 
further derivations. 

The system (1) will be transformed to a linear algebraic 
system, using the expansion of ),( sJF l

n  via Laguerre 

polinomials )(|)(| xL n
k  [6], like in [5], for which the weight 

function is proportional to the gaussian unperturbed 
distribution: 
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Using orthogonality of expansion terms and the Bessel 
function expansion via Laguerre polinomials [6] 
(eq.(22.9.16)), taking into account the amplitude 
dependence of synchrotron frequency 

)/(1=)( 00 JJJ ξ−ΩΩ , one can get the following 
system of linear algebraic equations for the coefficients of 
distribution function perturbation expansion 
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where rfq , rfV  and 0sφ  are the RF harmonic number, 

the RF voltage amplitude and the synchronous phase, jθ  
are the angular positions of bunches (for the case of 
counterrotating bunches jθ  are defined as in [1]). 

NECESSARY NUMBER OF TERMS 
Considering the coefficients )(|||| mB qn

k'k
 (4), one can see 

that due to factorials in the denominator, the matrix 
elements decrease rather quickly with increasing kk' ,  
and for any upper boundary 0= ωω maxmax m  of the 
considered RF spectrum the necessary order of 
approximation maxk  can be estimated as  

./2)( 2
0φmaxmax mk ≈       (5) 

For short bunches, at 10 <<φmaxm , the zero order of 

approximation 0=maxk  gives the accurate result - the 
same as in [1] (without Landau damping). 

Note that the elements of the matrix nM̂  describing 
the effect of amplitude dependence of the synchrotron 
frequency, do not decrease as well with increasing k . 
One can show (see [2]) that neglecting interaction with 
RF elements and considering the solutions of (3) taking 
into account only nM̂ξ , we can get with increase maxk  
the more wide and the more dense spectrum of solutions, 
which evidently describes incoherent motion with 
continuous spectrum. But in the case of coherent 
oscillation, the term nM̂ξ  only gives an correction to the 
main solution determined by interaction with RF system, 
and the necessary value of maxk  can be defined by (5) or 
should be increased if coherent frequency shifts are of the 
order  or less than 0Ωξ . 

THE CODE MBIM2 
The method given above is realized in the computer 

code MBIM2 (MultiBeam Instability, Multipole 
oscillations, version 2 for long bunches). The code solves 
the problem of longitudinal coherent oscillations for the 
case of long bunches, taking into account coupling of 
neighbour multipole types of synchrotron oscillations and 
Landau damping. 

For resonant eigen modes of RF cavities spectrum the 
method of analytical summation of the series over 
azimuthal harmonics given in [7] is applied, in order to 
improve the accuracy of summation, especially for 1)low 
quality factors; 2)different charges of bunches; 3)at 
considering internal bunch motion. 

The order of the problem (that is the order of the 
considered equation system) is equal to the number of 
bunches with a nonzero charge times approximation order 
times number of different multipole types considered 
simultaneously. 

 AN EXAMPLE 
Consider a simplest case of interaction of the 

symmetric multibunch beam with only one RF cavity 
mode, in dependence on its quality factor.  

For a symmetric beam, the whole matrix of the problem 
splits for bN  independent matrixes for each normal 
symmetric mode. If the width of the considered 
impedance rω∆  is much more than 0ωbN , then the 
solutions for all symmetric modes coincide and the 
multibunch beam has the same growth rates and the same 
threshold current of one bunch bN NII /1 =  as that of the 

singlebunch beam 0I . If 0< ωω br N∆ , then the 
solutions for symmetric modes are splitted, the threshold 
currents for some modes decrease and for others - 
increase in comparison with the single-bunch beam. 
Finally, for the narrow resonance 0ωω br N<<∆ , 
exciting only one of symmetric modes, the threshold 
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current of the whole multibunch beam NI  coincides with 
the threshold current of the single-bunch beam 0I . This 

dependence is shown on the Fig.1 (for 1000=/ 0ωωr , 

5=bN ).  

 COMPARISON OF THE SOLUTION 
WITH LANDAU DAMPING WITH THE 

SHORT BUNCH APPROACH 
When minb λσ <<  and the calculated complex 

frequency shifts are much less than the synchrotron 
frequency, both codes (MBIM1 [1] and MBIM2) could be 
used. In this case, the dependence on the impedance 
remains only in the matrix elements of the zero order of 
approximation, with (0,0)=),( 'kk . But for accurate 
description of Landau damping, we should keep higher 
order of the matrix M . 

Fig. 2 shows the lines of equal maximal growth rates 
(for a simplest case of one bunch and dipole synchrotron 
oscillations) on the complex plane of the variable 

)(= 0ωλ imimZA mm
−Ω−∑ , in units of the 

synchrotron frequency spread Ωξ . This picture is shown 

for the large approximation order 40=maxk  and for the 
model of short bunches [1]. 

The higher the order of approximation, the more similar 
is the picture to the case of short bunches, at small growth 
rates. Such high approximation order is necessary only for 

Ωξλ ~||  and the greater || λ  the lesser approximation 
order is sufficient for good approximation. At large 
growth rates the same result can be obtained with much 
smaller order of approximation. 
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Figure 1: The dependence of the threshold current of the 
whole multibunch beam NI , of its one bunch 1I  and of 
the singlebunch beam ( 0I ) on the quality factor Q.  

 
Figure 2:  The lines of equal maximal growth rates on the 
complex plane of the variable 

)(= 0ωλ imimZA mm −Ω−∑ , obtained with the approach 
of short bunches (above) and with the method of present 
paper, for approximation orders 40=maxk  (below).   
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