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Abstract

In accelerators, it is common that the motion of the hor-
izontal x-plane is coupled to that of the vertical y-plane.
Such coupling will induce tune shifts and can cause insta-
bilities. The damping and diffusion rates are also affected,
which in turn will lead to a change in the equilibrium in-
variants. With the perturbative approach which is also used
for synchrobetatron coupling [B. Nash, J. Wu, and A. Chao,
work in progress], we study the x-y coupled case in this pa-
per. Starting from the one-turn map, we give explicit for-
mulae for the tune shifts, damping and diffusion rates, and
the equilibrium invariants. We focus on the cases where the
system is near the integer or half integer, and sum or dif-
ference resonances where small coupling can cause a large
change in the beam distribution.

Introduction

It is of general interest to obtain equilibrium invariants
for a coupled system. In this paper, we will find the equi-
librium value of the eigen-invariants for a linear x-y cou-
pled system. Particularly, we study their behavior near res-
onances, i.e., integer / half-integer, and sum / difference
resonances. In general, for a 3-D system not exactly on res-
onance, there are three eigen-invariants g1,2,3. Assuming
no coupling between the longitudinal and the transverse di-
mensions, we can consider a 2-D system with the two trans-
verse dimensions (even though the diffusion matrix has to
be deduced from 3-D dynamics), and we will work in the
betatron coordinates. It can be shown that gi = ZT GiZ/2
are eigen-invariants with the matrix Gi = JUḠiU

T J ,
and Z = [xβ , x′β , yβ , y′β ]T . We describe the dynamics
by a one-turn map, M . The eigenvector matrix U is de-
fined by MU = Uλ, with λ being the diagonal eigenvalue
matrix.1 Assuming the damping and diffusion are slow
processes, and the particle motion still follows the eigen-
invariants. The change in the invariant per turn is given
by ∆〈gi〉 =

∮
ds(−tr(Ai(s))〈gi〉 + tr(Gi(s)D(s)) ≡

−
∮

bi(s)〈gi〉+
∮

di(s), which determines the equilibrium
of 〈gi〉eq =

∮
di(s)/

∮
bi(s). Here, D(s) is the local dif-

fusion matrix, and A(s) = U−1b(s)U with b(s) the local
damping matrix, A1 the up-left 2 × 2 matrix and A2 the
low-right 2 × 2 matrix of A. So technically, the problem
reduces to finding the U -matrix. This is accomplished via
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1Various matrices are J =

(
J2 0
0 J2

)
, Ḡ1 =

(
iσ̄x 0
0 0

)
,

Ḡ2 =

(
0 0
0 iσ̄x

)
, J2 =

(
0 1
−1 0

)
, σ̄x =

(
0 1
1 0

)
. Super-

script T is taking transpose, tr takes the trace.

the 2nd-order degenerate perturbation theory.

Second-order degenerate perturbation theory

The uncoupled motion in the x and y dimension is

described by the one-turn map

(
Mx0 0

0 My0

)

, where

Mx0 and My0 are symplectic 2 × 2 matrices. In
the integer ( half-integer ) resonance case, My0 = I
(−I). Following Courant-Synder [1], we can write
Mx0,y0 = cos µx,y I + sinµx,y Jx,y with Jx,y =(

αx,y βx,y

−γx,y −αx,y

)

. The corresponding eigenvectors are

v10 = [(1 − iαx)/
√

γx, i
√

γx, 0, 0]T /
√

2 for the positive
mode, i.e., its eigenvalue λ10 = eiµx . The negative mode
λ−10 = e−iµx has v−10 = iv∗10. Same for the y dimension.

We solve the eigenequation

Mvk = λkvk, (1)

with M = M0 + M1 + M2. The four eigenvectors vk0

(k = 1,−1, 2, and −2) of M0 set up the complete and
orthonormal basis, with M0vk0 = λk0vk0. The conju-
gate vector is defined as vk0 ≡ −i sgn(k)v†k0J , so that
vj0vk0 = δjk. We will treat M1 and M2 as the 1st- and
2nd-order perturbation. The eigenvalues are expanded as
λk = λk0 + λk1 + λk2 + O

(
ε3

)
. Assuming that there is

degeneracy among vectors with indices ∈ Zdg, the eigen-
vectors are expanded in the following way

vk =






[
1 + ck

k2 +O
(
ε3

)]
vk0

+
∑

j �=k

[
cj
k1 + cj

k2 +O
(
ε3

)]
vj0

for k /∈ Zdg
∑

j∈Zdg

[
cj
k0 + cj

k2 +O
(
ε3

)]
vj0

+
∑

j /∈Zdg

[
cj
k1 + cj

k2 +O
(
ε3

)]
vj0

for k ∈ Zdg.

(2)

Now, the eigenequation (1) is solved order by order. Re-
sults are given below omitting derivations.

Nondegenerate part (i.e., for k /∈ Zdg) For the 1st-
order, we have λk1 = Mkk; and for l �= k, cl

k1 =
Mlk/(λk0 − λl0) with Mlk ≡ vl0M1vk0. For the 2nd-
order, we have λk2 =

∑
j �=k cj

k1Mkj +M2,kk; and for l �=
k, cl

k2 = (cl
k1λk1 −

∑
j �=k cj

k1Mlj −M2,lk)/(λl0 − λk0)
with M2,lk ≡ vl0M2vk0.

Degenerate part (i.e., for k ∈ Zdg) For the 1st-order,
for l ∈ Zdg, we have

∑

j∈Zdg

Mljc
j
k0 = λk1c

l
k0, (3)
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which is the eigenequation for both λk1 and cl
k0; and for

l /∈ Zdg, cl
k1 = (

∑
j∈Zdg

cj
k0Mlj)/(λk0 − λl0). For the

2nd-order, for l ∈ Zdg, we have

λk2 =

∑
j /∈Zdg

cj
k1Mlj +

∑
j∈Zdg

cj
k0M2,lj

cl
k0

; (4)

and for l /∈ Zdg , cl
k2 = (λk1c

l
k1 −

∑
j /∈Zdg

cj
k1Mlj −

∑
j∈Zdg

cj
k0M2,lj)/(λl0 − λk0). Notice that the vk in Eq.

(2) are not normalized yet.

Resonances

In the integer / half-integer resonance case, the degener-
acy comes in one subspace, say, in y, so that λ20 = λ−20,
and Zdg = (2,−2). For integer, then λ20 = λ−20 → 1,
for half-integer → −1. For sum resonance, i.e., µx +
µy ≈ 2nπ, Zdg = (1,−2). For difference resonance, i.e.,
µx − µy ≈ 2nπ, Zdg = (1, 2). Hence, calculations for
all cases involve eigenanalyzing 2× 2 coupling coefficient

matrices, which we designate as (
a b
c d

). Its eigenvalues

are λ± = 1
2 [(a + d)±

√
(a− d)2 + 4bc] and eigenvectors

are v± = ( 1
2c [(a− d)±

√
(a− d)2 + 4bc], 1)T .

Sum resonance According to Eq. (3),




(
M11 M1−2

M−21 M−2−2

) (
c1
10

c−2
10

)

= λ11

(
c1
10

c−2
10

)

,
(

M11 M1−2

M−21 M−2−2

) (
c1
−20

c−2
−20

)

= λ−21

(
c1
−20

c−2
−20

)

.

Explicitly, we have a = M11 = iλ10	M11
, d =
M−2−2 = −iλ ∗20	M22
, b = M1−2 ≡ (ξ/2)eiφ, and
c = M−21 ≡ (ξ/2)ei(2µ−φ). Here, we introduce the oper-
ator 	 
, which only means that 	x
 is real, but not guaran-
tee that 	x
 > 0. Notice that λ10 = λ−20 = eiµ. We define
M11 − M−2−2 = ieiµ(	M11
 + 	M22
) ≡ ieiµ∆µ.
We then define tanh θ ≡ ξ/|∆µ|. The eigenvec-
tors depend on the sign of ∆µ. For ∆µ > 0,




(
c1
10

c−2
10

)

=
(

iei(φ−µ) cosh (θ/2)
sinh (θ/2)

)

,
(

c1
−20

c−2
−20

)

=
(

sinh (θ/2)
−ie−i(φ−µ) cosh (θ/2)

)

.
No-

tice that in this formalism, the system is unstable for
the x-y coupled case.2 Now the U -matrix is con-
structed as U = (v1, iv

∗
1 , v2[= iv ∗−2], v−2), with{

v1 = iei(φ−µ) cosh (θ/2) v10 + sinh (θ/2) v−20

v−2 = sinh (θ/2) v10 − ie−i(φ−µ) cosh (θ/2) v−20
.

In β-coordinates, the damping and diffusion

matrices read b =







0 0 0 0
0 2bx 0 0
0 0 0 0
0 0 0 2by





, and

2For ∆µ < 0, we have






(
c110
c−2
10

)
=

(
−iei(φ−µ) sinh (θ/2)

cosh (θ/2)

)
,

(
c1−20

c−2
−20

)
=

(
cosh (θ/2)

ie−i(φ−µ) sinh (θ/2)

)
.

D = d







η2
x ηxη′x ηxηy ηxη′y

ηxη′x η′2x η′xηy η′xη′y
ηxηy η′xηy η2

y ηyη′y
ηxη′y η′xη′y ηyη′y η′2y





 Using

A = U−1bU , the damping coefficients are given as{
b1 = 2bx cosh2 (θ/2)− 2by sinh2 (θ/2) ,

b2 = −2bx sinh2 (θ/2) + 2by cosh2 (θ/2) .
, and

diffusion coefficients 3

d1 = dHx cosh2 (θ/2) + dHy sinh2 (θ/2)

− d sinh(θ)
√

γxγy

[(
GxGy − η′xη′y

)
cos(µ− φ)

+
(
Gxη′y + Gyη′x

)
sin(µ− φ)

]
, (5)

d2 = dHx sinh2 (θ/2) + dHy cosh2 (θ/2)

− d sinh(θ)
√

γxγy

[(
GxGy − η′xη′y

)
cos(µ− φ)

+
(
Gxη′y + Gyη′x

)
sin(µ− φ)

]
, (6)

with Hx,y = γx,yη2
x,y + 2αx,yηx,yη′x,y + βx,yη′2x,y, Gx,y =

αx,yη′x,y + γx,yηx,y , and γx,yHx,y = η′2x,y + G2
x,y .

The equilibrium value is 〈gi〉eq =
∮

di(s)/
∮

bi(s), for
i = 1, 2.

Difference resonance According to Eq. (3)




(
M11 M12

M21 M22

)(
c1
10

c2
10

)

= λ11

(
c1
10

c2
10

)

,
(
M11 M12

M21 M22

)(
c1
20

c2
20

)

= λ21

(
c1
20

c2
20

)

.

Explicitly, we have a = M11 = iλ10	M11
,
d = M22 = iλ20	M22
, b = M12 ≡ (ξ/2)eiφ,
and c = M21 = −(ξ/2)ei(2µ−φ). Notice
that λ10 = λ20 = eiµ. Let us now define
M11 − M22 = ieiµ(	M11
 − 	M22
) ≡ ieiµ∆µ.
We then define tan θ ≡ ξ/|∆µ|. Again, the eigenvec-
tors depend on the sign of ∆µ. For ∆µ > 0, they are




(
c1
10

c2
10

)

=
(
−iei(φ−µ) cos (θ/2)

sin (θ/2)

)

,
(

c1
20

c2
20

)

=
(

sin (θ/2)
−ie−i(φ−µ) cos (θ/2)

)

.
Notice that

the system is found to be stable for the x-y coupled case.4

Now the U -matrix is constructed as U = (v1, iv
∗
1 , v2, iv

∗
2 ),

with

{
v1 = −iei(φ−µ) cos (θ/2) v10 + sin (θ/2) v20

v2 = sin (θ/2) v10 − ie−i(φ−µ) cos (θ/2) v20
.

The damping coefficients are computed to be{
b1 = 2bx cos2 (θ/2) + 2by sin2 (θ/2) ,
b2 = 2bx sin2 (θ/2) + 2by cos2 (θ/2) .

and diffu-

sion coefficients are

d1 = dHx cos2 (θ/2) + dHy sin2 (θ/2)
3Notice that for η′x,y = 0, d1 = dHx cosh2(θ/2) +

dHy sinh2(θ/2) − d
√
HxHy cos(µ − φ) sinh(θ), and d2 =

dHx sinh2(θ/2)+dHy cosh2(θ/2)−d
√
HxHy cos(µ−φ) sinh(θ).

4For ∆µ < 0, they are






(
c110
c210

)
=

(
−iei(φ−µ) sin (θ/2)

cos (θ/2)

)
,

(
c120
c220

)
=

(
cos (θ/2)

−ie−i(φ−µ) sin (θ/2)

)
.
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− d sin(θ)
√

γxγy

[(
GxGy + η′xη′y

)
sin(µ− φ)

+
(
Gxη′y − Gyη′x

)
cos(µ− φ)

]
, (7)

d2 = dHx sin2 (θ/2) + dHy cos2 (θ/2)

+
d sin(θ)
√

γxγy

[(
GxGy + η′xη′y

)
sin(µ− φ)

+
(
Gxη′y − Gyη′x

)
cos(µ− φ)

]
. (8)

Integer / half-integer resonance The physics of the
sum / difference resonance is analyzed within the 1st-order
degenerate perturbation as above. However, the integer /
half-integer resonance is more involved. The physics of
this resonance needs to be analyzed in a 2nd-order pertur-
bation calculation. As we find, the perturbation matrices

are M1 = (
0 B
C 0 ), and M2 = (

A 0
0 D

). Equation (3)

yields λk1 = 0 for k ∈ Zdg, so it is determined by Eq. (4),
which is 2nd-order, i.e.,


















M12M21
λ20−λ10

M1−2M21
λ20−λ10

+M−12M2−1
λ20−λ−10

+M−1−2M2−1
λ20−λ−10

+M2,22 +M2,2−2

M12M−21
λ20−λ10

M1−2M−21
λ20−λ10

+M−12M−2−1
λ20−λ−10

+M−1−2M−2−1
λ20−λ−10

+M2,−22 +M2,−2−2














(
c2
20

c−2
20

)

= λ22

(
c2
20

c−2
20

)

,














M12M21
λ−20−λ10

M1−2M21
λ−20−λ10

+M−12M2−1
λ−20−λ−10

+M−1−2M2−1
λ−20−λ−10

+M2,22 +M2,2−2

M12M−21
λ−20−λ10

M1−2M−21
λ−20−λ10

+M−12M−2−1
λ−20−λ−10

+M−1−2M−2−1
λ−20−λ−10

+M2,−22 +M2,−2−2















(
c2
−20

c−2
−20

)

= λ−22

(
c2
−20

c−2
−20

)

.

Notice that d = a∗ and c = b∗. We define a − d =
i2�a ≡ i∆µ, and b = c∗ ≡ (ξ/2)eiφ. Notice that
ξ > 0, however, ∆µ can be either negative or posi-
tive. We then define tanh(θ) ≡ ξ/|∆µ|. The eigen-
vectors depend on the sign of ∆µ.5 For ∆µ > 0, they

are






(
c2
20

c−2
20

)

=
(

ieiφ cosh (θ/2)
sinh (θ/2)

)

(
c2
−20

c−2
−20

)

=
(

sinh (θ/2)
−ie−iφ cosh (θ/2)

)

.
The sim-

plectic U -matrix is then defined as U = {v1, iv
∗
1 , v2, iv

∗
2 },

with

{
v2 = ieiφ cosh (θ/2) v20 + sinh (θ/2) v−20

v−2 = sinh (θ/2) v20 − ie−iφ cosh (θ/2) v−20
.

5For ∆µ < 0,






(
c220
c−2
20

)
=

(
−ieiφ sinh (θ/2)

cosh (θ/2)

)
,

(
c2−20

c−2
−20

)
=

(
cosh (θ/2)

ie−iφ sinh (θ/2)

)
.

The damping coefficients are computed to be{
b1 = trx (A) = A11 + A22 ≈ 2bx

b2 = try (A) = A33 + A44 ≈ 2by
. Similarly the

diffusion coefficients are d1 = dHx; and for ∆µ > 0,6

d2 = dHy cosh(θ) + (d/γy)[cos(φ)(η′2y − G2
y) +

2 sin(φ)η′yGy] sinh(θ).

Figure 1: Damping / diffusion rate for the sum resonance.

Discussion

For integer / half-integer resonance, the coupling does
not affect the damping. However, the diffusion rate may
increase substantially, i.e., ∆µ → ξ implies θ � 1. In the
sum resonance case, the instability comes from two effects.
In addition to a coupling stopband, the damping rate may
become negative (antidamping) while the diffusion rate be-
comes very large. In the difference resonance case, both the
damping rate and the diffusion rate stay finite. Let us study
the sum resonance, and show some properties in Fig. 1. We
plot the simplified expression with η′x = η′y = 0 as in Foot-
note 3. Thinking of a flat beam, we assumeHy = Hx/100,
also an exaggerated by = bx/2, with parameters φ = π/2
and µ = 0.3. The red solid curve is for d1(θ), the purple
long-dashed for d2(θ), the blue dashed for b1(θ), and green
dotted for b2(θ). It is clearly seen that due to coupling (θ),
the diffusion rate in y direction increases very rapidly. In-
terestingly, the y damping rate becomes negative, indicat-
ing an antidamping type of instability. Of course, this does
not happen for bx = by .

In conclusion, we studied the equilibrium value of the
eigen-invariants near the integer / half-integer resonance,
and the sum / difference resonance. The similar topic of
synchro-betatron coupling is studied elsewhere [2], where
more details can be found.
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