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Abstract

The single-particle dynamics in atime-dependent focus-
ing field is examined. The existence of the Courant-Snyder
invariant is fundamentally a result of the corresponding
symmetry admitted by the oscillator equation with time-
dependent frequency. A careful analysis of the admitted
symmetries reveals a deeper connection between the non-
linear envelope equation and the oscillator equation. A
general theorem regarding the symmetries and invariants
of the envelope equation, which includes the existence of
the Courant-Snyder invariant as a special case, is demon-
strated. The symmetries of the envel ope equation enable a
fast algorithm for finding matched solutions without using
the conventional iterative shooting method.

INTRODUCTION
The Courant-Snyder invariant for an oscillator with time-

dependent frequency is an important concept for accelera-
tor physics[1]. For an oscillation amplitude u(t) satisfying

i+ k(t)u=0, @

where () isthe time-dependent frequency coefficient, the
Courant-Snyder invariant is given by [2]

u2

I= 2 + (u — wir)® . 2
Here, w = w(t) isany solution of the envelope equation

1
This classical result has been derived many times using
different methods. Initialy, it was derived by Courant
and Snyder in 1958 [2] using the basic techniques for
Hill's equation. It was rediscovered by Lewis [3] using
the asymptotic method developed by Kruskal [4]; Eliezer
and Gray [5] demonstrated a physical interpretation of the
invariant; a derivation using linear canonical transforma-
tion was given by Leach [6]; and Lutzky re-derived the re-
sult using Noether’s theorem [7]. A short review of vari-
ous derivation methods can be found in Ref. [8]. We note
that the basic concept of the Courant-Snyder invariant may
had appeared earlier in other formats. For example, Kul-
srud obtained two equations for w which are equivalent to
Eq. (3) [9]. The concept of an envelope function w and
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its notation, we believe, can be attributed to a paper by
Brikhoff [10], which predated the 1911 Solvay Conference,
where, according to commonly accepted history, the con-
cept of adiabatic invariant for a time-dependent harmonic
oscillator wasfirst discussed by Lorentz and Einstein [11].

In this paper, we first re-examine the time-dependent
harmonic oscillator equation from the viewpoint of the
symmetry group G for Eq. (1). It is shown that the sym-
metry group for Eqg. (1) is generated by an 8D Lie alge-
bra (infinitesimal generator) g, which contains the 3D sub-
agebra gc s that corresponds to the Courant-Snyder invari-
ant. The envelope equation appears naturally as the deter-
mining equationfor g 5. Wethen investigate the symmetry
group of the envelope equation itself. It is interesting that
the determining equation for the Lie algebra g, of the sym-
metry group G, for the envelope equation is an envelope
equation itself. A theorem regarding the symmetry and the
invariant for envelope equationsis presented, together with
applications.

SYMMETRY GROUP FOR
TIME-DEPENDENT OSCILLATOR
EQUATION

A symmetry group can be used to reduce the order of
differential equations and to generate invariants [12]. We
search for vector fields v in (¢, u) space

v = &(t, u)% + o(t, u>§—u 4

as infinitesimal generators (Lie algebra) g for the symme-
try transformation group G, which leaves Eq. (1) invariant.
The vector field v will induce a vector field in (¢, u, @, i)
space, i.e., the prolongation of v denoted by pr(?)v,

o 0 P P

)y =L I u Y uu Y
prov=_Eg t o5, H o g o g ©)
(bu = ¢t + ((bu - gf)u - fuﬂQ 9 (6)
G = —3€, i + (bu — 26,)ii — Eutl? %

+ (Puu — 2ftu>ﬂ2 + (20ur — &)U+ by

The determining equation for v to be an infinitesimal gen-
erator for G is

pr®u i+ k(t)u] = ¢" + kp+ Eru=0. (8)
Substituting the expression for ¢ “*, we obtain

_guuQB + (¢uu - 2€tu)u2 + (3/€£uu + 2¢ut - gtt)a
—(u — 2§1)ku + Gyt + K + £Eu = 0. ©
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Since Eq. (9) should be valid everywherein (¢, u, i) space,
the coefficients of 3, %2, and @ should vanish, i.e.,

§uu =0, (10)

Dun — 2£tu =0, (11)

36yt + 20yt — & =0, (12)

—K (pu — 2§) u+ du + KO+ EEu=0.  (13)

Equations (10)-(13) can be used to find the solutionsfor &
and ¢. After some algebra, we obtain

E=alt)u+b(t), (14
¢ =a(t)u® +c(t)u+d(t), (15)
where a(t), b(t), c(t) and d(t) satisfy
i+ rka=0, (16)
d+rkd=0, 17)
b+ 4kb+2kb =0, (18)
é— g =0. (19)

Equations (16)-(19) have eight degrees of freedom. There-
fore, theLieagebra g is8D, which isthe maximum dimen-
sion that a second-order ODE can have for the Lie algebra
of its symmetry group. The sub-algebras generated by a,
d, and b are independent, and have the dimension of 2, 2,
and 3 respectively. From Eqg. (19), we obtain
b +
C= — Co .
2 0
There is one degree of freedom associated with ¢g.
According to the basic result of Noether’s theorem, ev-
ery infinitesimal divergence symmetry corresponds to an
invariant [12]. Here, an infinitesimal divergence symmetry
is defined as a vector field satisfying
d¢  dB(t,u)
2 bk R )
pr¥v(L) + L T pn
for some function B(t, u). In Eq. (21), L isthe Lagrangian
for EQ. (1). It can be shown that

@y = 44 | 9L
prio(l) = — + 6=
for some function A(t, u), from which it follows that I =
B — A — L¢ isan invariant if v is an infinitesimal diver-
gence symmetry. It can also be demonstrated that every
infinitesimal divergence symmetry belongsto the Lie alge-
bra g for the symmetry group G of Eqg. (1). Since we have
obtained the Lie algebra g, to determine all of theinvariants
of Eq. (1), it isonly necessary to verify which subspace of
g consists of infinitesimal divergence symmetries. It turns
out that the infinitesimal divergence symmetries form a 5D
subspace g, of the 8D Lie algebra g. It is given by

(20)

(21)

(22)

For the 2D sub-algebrav = dd/du associated with d, it is
easy to show that the invariant is

I=ud—ud, (24)
which is the well-known Wronskian for linear equations.
For the 3D Lie agebrav = b9/9¢ + u(b/2)0/du associ-
ated with b, theinvariant is found to be

bk b b
I=|-+4+—- 24 —0® — Zua. 2
1 2bu 5 i (25)

We now show that thisisindeed the Courant-Snyder invari-
ant. Let b = 2w?, Eq. (18) becomes

wib + 3w + dkw + Fw? =0, (26)

which is equivalent to
3ih + hw =0, (27)
hzw—knw—i. (28)

w3

In other words,

for an arbitrary constant . Thus, we obtain the envelope
equation

ﬂ}—&—mw—%:O. (29
In terms of w, the infinitesimal generator is
0 0
vos = 2wl = + dwbu— , (30)

ot ou

and theinvariant in Eq. (25) becomes the familiar Courant-
Snyder invariant

3 (31)

I=(@?+ wi)vf +w?a® — 2wiui.
In this sense, we can refer to the symmetry group gener-
ated by the infinitesimal generator in Eq. (30) as Courant-
Snyder symmetry. The Lie algebra of the Courant-Snyder
symmetry is 3D because ¢ is an arbitrary constant in addi-
tion to the two arbitrary constants needed to specify a par-
ticular solution for w. Not surprisingly, Eq. (18) is exactly
the same as that for the well-known 3 functionin Courant-
Snyder theory.
The 3D subspace in g complementary to ¢g; does not pro-
duce any invariant. The one degree of freedom associated
with ¢ in Eg. (20) corresponds to

V= cou% ,
which generates the symmetry group of the scaling trans-
formation @ = exp(co7)u, which is obviously due to the
fact that Eq. (1) islinear. The sub-algebra of g generated

- b(t)g L @u +d(t) 9 (23) by a has 2 degrees of freedom, but currently it does not
ot 2 ou seem to have any appreciable importance.
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SYMMETRY GROUP FOR THE
ENVELOPE EQUATION

We now apply the symmetry group analysis to the en-
velope equation [Eqg. (29)] itself. The symmetry group G .,
for Eg. (29) should be a subgroup of the symmetry group G
for Eqg. (1), because the special case of Eq.(29) fore = 0
is EQ. (1). Carrying out a similar procedure to that for de-
riving Egs. (16)-(19), we obtain the Lie algebra g, for G,
as

0 .0
Vw = 2’(1)%& + 4w1w1% 5 (32)
where w, satisfies another envel ope equation
1'1')1+I€’w1—€—13=0 (33)
w

1
with an arbitrary constant ;. Further analysis shows that
Uy ISaninfinitesimal divergence symmetry with the invari-
ant

2 2
r=e(2) va (2) + twin - iown)?
w

w1

(34)

We summarize the above result in the following theorem.

Theorem 1. For an arbitrary function « (¢) and w1, we
satisfying

w1 + Kwy = 8—13, (35)
wy

’L.l.)g + Kwo = —23 s (36)
w

2

where ¢, and e5 are real constants, the quantity

2 2
I=¢ <%> + &9 (%) + (watin — w2w1)2 (37)

w1 2
isan invariant.

This result was obtained by Lutzky in a less general
form [7], and it can be straightfowardly verified by direct
calculation. The invariant in Eq. (37) allows us to solve for
the general solutions for w; in terms of a special solution
for wo. Let ¢ = wq /w2, we obtain

Here, I and C are constants. Equation (41) recovers the
Courant-Snyder theory, Egs. (1) and (3), as a specia case
whene; = 0, andes = 1. Another application of Theorem
1 and Eq. (41) is in the numerical solution of the envelope
equation [Eq. (3)]. For a periodic focusing lattice x(¢), it
is desirable to find matched solutions to construct the 3
functions. Normally, this is done by a shooting method,
where Eq. (3) is solved numerically many times, iteratively.
Using Eq. (41) for the case where e; = e = 1, we can
have a much more efficient algorithm, where Eq. (3) needs
to be numerically solved only once. First, we pick arbitrary
initial conditionsfor w(t = 0) = wo and w(t = 0) = wyp at
t = 0, and solve numerically for w from¢ = 0 to onelattice
period at ¢ = T. Denote this solution as w(t). Applying
Eq. (41), the general solutionfor wy is

wy = ws (I— V1?2 —4sin [_2(¢+C)])1/2 . (42
2

1
v [ o 43
0o Ws
By selecting I and C such that
wg(0) = wy(T) and wy(0) = wy(T) , (44)

we obtain the matched solution to Eq. (3) for aperiodic fo-
cusing lattice k(t) = k(t + 7).
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