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Abstract

The interaction region bump (IR bump) nonlinear cor-
rection method has been used for the sextupole and octu-
pole field error on-line corrections in the Relativistic Heavy
Ion Collider (RHIC). Some differences were found for
the sextupole and octupole corrector strengths between the
on-line IR bump correction and the predictions from the
action-angle kick minimization. In this article, we com-
pare the corrector strengths from these two methods based
on the RHIC Blue ring lattice with the IR nonlinear mod-
eling. The comparison confirms the differences between
resulting corrector strengths. And the reason for the differ-
ences is found and discussed.

ACTION-ANGLE KICK MINIMIZATION

To minimize the action change for each order of IR non-
linear field error, it is equivalent to minimize the following
quantities simultaneously [1],

∮
L

dsCzcn + (−1)n+1

∮
R

dsCzcn, (1)

where L and R mean the left and right sides of the inter-
action region, z stands for x or y plane, cn stands for the
normal or skew field errors bn or an, n is the field error or-
der. Cz is the weight factor. Table 1 lists the weight factors
for different field error bn and an.

Table 1: Weight factors for action-angle kick minimization
Order Cx Cy knl (−1)n+1

/knsl

b2 β
3/2
x β

1/2
x βy k2l -1

b3 β2
x β2

y k3l 1

b4 β
5/2
x β

1/2
x β2

y k4l -1
b5 β3

x β3
y k5l 1

a2 βxβ
1/2
y β

3/2
y k2sl -1

a3 β
3/2
x β

1/2
y β

1/2
x β

3/2
y k3sl 1

a4 β2
xβ

1/2
y β

5/2
y k4sl -1

a5 β
5/2
x β

1/2
y β

1/2
x β

3/2
y k5sl 1

The action-angle kick minimization assumes that the
phase advances in the horizontal and vertical planes across
the interaction point are close to π. And it ignores the phase
advance in the triplet because of the small β∗. It assumes
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the beam is round beam, therefore, only the leading reso-
nances in horizontal and vertical planes are corrected.

IR BUMP CORRECTION

The IR bump correction method [2, 3, 4, 5] is an elegant
way for the operational IR nonlinear corrections in a real
machine. It creates a local horizontal or vertical orbit bump
across the interaction region. The small tune shifts due to
the bump are measured with a high resolution phase lock
loop( PLL ) tune measurement system. Since the relations
between the tune shifts and the bump amplitudes are dif-
ferent for different orders of nonlinear errors, the IR bump
correction is performed order by order by minimizing the
polynomial fitting coefficients of the tune shifts.

For example, to correct the sextupole errors in the IR,
we minimize the linear terms of the tune shifts from the
horizontal IR bump with respect to the bump amplitude.
To correct the octupole errors, we minimize the quadratic
terms of the tune shifts from the horizontal IR bump with
respect to the bump amplitude.

COMPARISON

Sextupole Correction

For the horizontal IR bump, the linear terms of the tune
shifts are contributed from the sextupoles. We use two sex-
tupole correctors bo7-sx3 and bi8-sx3 to minimize these
linear term tune shifts in the Blue IR8. The three dipole
kickers bo7-th4, bi8-th3 and bi8-th5 bump produce the de-
sired IR bumps.

Table 2 gives the linear terms from the off-line IR bump
simulations. The second block gives the residual linear
term of the tune shifts from the IR bump in the IR8. The
third block gives the two correctors’ contributions to the
linear terms with k2l = 0.001. Based on Table 2, the cor-
rection strengths for bo7-sx3 and bi8-sx3 are calculated to
cancel the residual linear terms.

From IR bump simulation, the correction strengths for
bo7-sx3 and bi8-sx3 are −4.54 × 10−3 m−2 and 2.74 ×
10−3 m−2, respectively. While from the action-angle kick
minimization analytical calculation, based on the nonlinear
optics model and Eq.(1), the integrated correction strengths
for bo7-sx3 and bi8-sx3 are−3.99×10−3 m−2 and 2.97−3

m−2, respectively. There is about a 10% difference in the
correction strength of bo7-sx3.
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Table 2: IR bump simulation for sextupole correction in
Blue IR8.

Conditions Plane Linear term
Coefficient

only b2 x 10.08× 10−5

errors y −9.26× 10−5

bo7-sx3 x 5.65× 10−6

k2l = 0.001 m−2 y −1.43× 10−5

bi8-sx3 x −2.74× 10−5

k2l = 0.001 m−2 y 1.01× 10−5

Octupole Correction

We use the two octupole correctors bo7-oct2 and bi8-
oct2 to minimize the quadratic terms of the tune shifts from
the horizontal IR bump in Blue IR8. The three dipole kick-
ers bo7-th4, bi8-th3 and BI8-TH5 bump produce the de-
sired IR bumps. Table 3 gives the residual quadratic terms
from the octupole errors from the IR bump simulations.
The correctors bo7-oct2 and bi8-oct2’s contributions to the
quadratic terms with k3l = 0.001 are given, too.

Table 3: IR bump simulation for octupole correction in
Blue IR8.

Conditions Plane Quadratic Term
coefficient

only b3 x −1.68× 10−7

errors y 6.40×10−8

bo7-oct2 x 1.58×10−7

k3l = 0.001 m−3 y -8.74×10−8

bi8-oct2 x 7.94×10−8

k3l = 0.001 m−3 y -1.43×10−7

From the IR bump correction simulation, the inte-
grated correction strengths for bo7-oct2 and bi8-oct2 are
0.121 m−3 and −0.029 m−3, respectively. While from
the action-angle kick minimization analytical calculation,
based on the IR nonlinear modeling, the integrated correc-
tion strengths for bo7-sx3 and bi8-sx3 are 0.0768 m−3 and
−0.023 m−3 , respectively. There are about 30% difference
in the correction strengths of bo7-oct2.

ANALYSIS

From the off-line IR bump correction and the action
angle minimization analytical calculation, we found that
there are about 10% difference for the sextupole corrector
strengths, and about 30% difference for the octupole cor-
rector strengths. They verified the discripancies found in
the sextupole and octupole correction strengths from the
operational IR bump corrections and the off-line action-
angle kicker minimization analytical calculations.

Here we check the ratios of the linear and quadratic
terms of two individual sextupole’s and octupoles, respec-

tively. For sextupoles, the horizontal linear term should
be proportional to β

3/2
x for two sextupoles if they have the

same integrated strength. From IR bump simulations, the
ratio of the linear term of the horizontal tune shifts from
two sextupoles bo7-sx3 and bi8-sx3 with the same inte-
grated strength 0.01 m−2 is

∆νx|bo7−sx3 : ∆νx|bi8−sx3

= 5.29× 10−5 : 27.79× 10−5

= 1 : 5.25
(2)

The ratio of the β3/2 of the two sextupoles are:

β
3/2
x |bo7−sx3 : β

3/2
x |bi8−sx3

= 479.033/2 : 1297.893/2

= 1 : 4.46
(3)

Therefore, from the IR bump simulation, the ratio of the
linear tune shift terms is not proportional to the ratio of
β3/2 for two sextupoles with the same integrated strength.
This only reason for the inequality is

xco|bo7−sx3 : xco|bi8−sx3

�= β
1/2
x |bo7−sx3 : β

1/2
x |bi8−sx3.

(4)

This guess is verified by the following orbit bump check at
these two sextupole correctors. From the IR bump simula-
tion with MADX,

xco|bo7−sx3 : xco|bi8−sx3

= 1 : 1.955,
β

1/2
x |bo7−sx3 : β

1/2
x |bi8−sx3

= 1 : 1.646.

(5)

If we substitute the orbit ratio of xco instead of the ratio
of β

1/2
x ,, we get the horizontal tune shift contribution ratio

from the two sextupoles:

(xcoβx)|bo7−sx3 : (xcoβx)|bi8−sx3

= 1 : 5.30, (6)

which is much closer to the linear term tune shift ratio we
get from the IR bump simulation.

Similarly, we check the quadratic term tune shift ratios
of two individual octupoles bo7-oct2 and bi8-oct2 with the
same integrated strength 0.001 m−3. From the IR bump
simulation, we get

∆νx|bo7−oct2 : ∆νx|bi8−oct2

= 1.58× 10−7 : 7.94× 10−8

= 1.996 : 1
(7)

However,
β2

x|bo7−sx3 : β2
x|bi8−sx3

= 1042.112 : 577.372

= 3.261 : 1
(8)

The ratio of the tune shifts are not equal to the ratio of β2
x as

assumed from Table 1, either. The ratio of orbit amplitudes
at the two octupoles is:

xco|bo7−oct2 : xco|bi8−oct2

= 1.051 : 1 (9)
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Substituting xco ratio instead of β
1/2
x ratio to calculate the

tune shifts due to octupoles, we obtain the horizontal tune
shift contribution ratio from the two octupoles:

(x2
coβx)|bo7−sx3 : (x2

coβx)|bi8−sx3

= 1.995 : 1 (10)

which is almost the same as that from the IR bump simula-
tion.

DISCUSSION

From the above calculation, we find the difference of the
correction strengths from the IR bump correction and the
action-angle kick minimization comes from the fact that
the horizontal orbit is not exactly proportional to the β

1/2
x .

The source for this difference is that the phase advance over
the interaction region is not exactly equal to π and there is
a small phase advance in the triplet.

Presenting the phase advance as ∆Ψ = π + ∆ψ in an-
other IR side, one can get the ratio of orbit positions on the
left and right sides of the interaction region as

xco,L

xco,R
=

√
βx,L sin(Ψ0)√

βx,R sin(Ψ0+∆Ψ)

� −
√

βx,L√
βx,R

(1− cot(Ψ0)∆ψ).
(11)

Although ∆ψ is small, the cot ψ0 can reach 15 units for
RHIC IR bump. It leads to considerable difference between
the ratio of the orbits and the ratio of

√
βx. Then the cor-

rection strengths from the IR bump correction are not the
same as that from the action-angle kick minimization ana-
lytical prediction.

Action-angle kick minimization ignores the small phase
change in the IR bump on both sides of the IP, while the
IR bump correction method takes into account the phase
shifts. Base on the Hamiltonian perturbation theory, sex-
tupoles could introduce Qx = p, 3Qx = p, Qx ± 2Qy = p
resonances. To fully correct all the resonances, we should
minimize all the following resonance strengths [7], that is,




∑
j k2lβ

1/2
x βyeiΨx −→ 0∑

j k2lβ
3/2
x eiΨx −→ 0∑

j k2lβ
3/2
x ei3Ψx −→ 0∑

j k2lβ
1/2
x βyei(Ψx−2Ψy) −→ 0∑

j k2lβ
1/2
x βyei(Ψx+2Ψy) −→ 0

. (12)

Octupoles induce 4Qx = p, 4Qy = p, 2Qx = p, 2Qy = p,
2Qx ± 2Qy = p resonances. To correct all the resonances,
we should minimize all the following resonance strengths,

that is,



∑
j k3lβ

2
xei4Ψx −→ 0∑

j k3lβ
2
yei4Ψy −→ 0∑

j k3lβxβyei2Ψx −→ 0∑
j k3lβ

2
xei2Ψx −→ 0∑

j k3lβxβyei2Ψy −→ 0∑
j k3lβ

2
yei2Ψy −→ 0∑

j k3lβxβyei(2Ψx+2Ψy) −→ 0∑
j k3lβxβyei(2Ψx−2Ψy) −→ 0

. (13)

So the two methods, IR bump correction and the action-
angle kick minimization, have different approximations in
the betatron phase advance. Action-angle kicker minimiza-
tion ignores the not exact π phase jump across the IP and
the samll phase change in the one side triplet. The IR bump
correction method uses a local orbit bump to minimize the
introduced polynomial terms of tune shifts. However, the
tune shifts from IR bump are proportional to sinn Φ, in-
stead of einΦ from Eqs. (12) - (13).

The action-angle kick minimization is used for IR non-
linear field correction off line up to b10 at CERN [8]. The
IR bump correction is applicable for the on linear IR non-
linear field correction. It has been verified and used in the
RHIC IR nonlinear corrections. Limited by the bump am-
plitude and the tune measurement resolution, it is generally
used for the lower order nonlinear field error corrections.

CONCLUSION

The correction strengths from the off-line IR bump cor-
rection simulation are compared to that from the action-
angle kick minimization. It verifies that there are some dis-
crepancies in the correction strengths from these two meth-
ods. This is caused by the fact that the not exact π phase
advance between the two sides of the interaction region,
which makes that the bump orbit not exactly proportionally
to the β1/2. Both methods make different approximations
in the betatron phase advances. The action-angle kick min-
imization is used for IR nonlinear field correction off line,
while the IR bump correction is applicable for the on-line
IR nonlinear field correction.
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