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Abstract

A general Hamiltonian that governs the beam dynam-
ics in an rf photoinjector is derived from first principles.
With proper choice of coordinates, the resulting Hamil-
tonian has a simple and familiar form, while taking into
account the rapid accel eration, rf focusing, magnetic focus-
ing, and space-charge forces. From the linear Hamiltonian,
beam-envelope evolution is readily obtained, which better
illuminates the theory of emittance compensation. Prelim-
inary results on the third-order nonlinear Hamiltonian will
be given aswell.

HAMILTONIAN WITH ACCELERATING
REFERENCE PARTICLE

Electrons are rapidly accelerated in an rf injector, thus a
Hamiltonian with accelerating reference particle is needed
for perturbative analysis. Since commonly used Hamiltoni-
ans assume a reference particle with (quasi) constant mo-
mentum, we start from the basic relativistic Hamiltonian
for a particle of mass m and charge ¢ moving under the
influence of an external electromagnetic field, i.e.,

H =q¢(X,t) + \/m2(34 +[P—gAX, D2, (1)

where X is the laboratory-frame Cartesian coordinate of
the particle and P isthe canonical momentum. The electro-
magnetic field is given by the scalar potential ¢ and vector
potential A. Timet istheindependent variable.

For convenience we use the longitudinal position s of a
reference particle as the independent variable and replace t
with the time of the reference particle ¢,.(s). Furthermore,
we normalize the momentum by mec. In other words, we
use X(s) = X(t,) and P(s) = P(t,)/mc asthe canonical
variables. The new Hamiltonian is given by

AR Ps) = H _ HX,P.t(s)

ds/dt mc Br(s) mc?

Normalizing the 4-potentials of the E.M. field by the 4-
momentum of the reference particle as

q¢

@)

qA

0= Ypme?’ A= Bryrme’ ®)
then the Hamiltonian can be written as
. 1 L .12
= 5T¢+@\/1+[P—P,&A] , 4)
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where PT’? = 0,7, isthe amplitude of the normalized kine-
matic momentum of the reference particle.

Using the new coordinatex = X — X, = X — X, and
the new momentump = P — P, = (P — P,.)/mc, anew
Hamiltonian can be obtained with the generating function
F(X,p,s)=(X-X,)-(p+P,)as

1 R .12
H—@qﬁ—kﬁr\/l—k{p—i—Pr—PﬁA )

- X; (p+15r) +x- ]-Slra

where the prime means differentiation with respect to s.
To expand the square root into a series, we note that
P, — PFA = P¥ — P*AA, where AA = A — A, is
the difference in vector potential seen by a particle and the
reference particle, which should be small. Thus the terms
under the square root can be written as 1 + (P¥)2 + 2P% .
(p— P¥ AA) + (p — P¥ AA)?, where thefirst two terms
are dominating and sum to 2. Taking 42 out of the square
root, the rest becomes 1 + 237 & + 37 62, where
p i _ P -P;
6= B AA = P (6)

isthe relative deviation in kinematic momentum. The sub-
script | indicates the longitudinal component. This form

is suitable for Taylor expansion since both p/P* and AA
and thus § are small quantities. Furthermore, when the mo-
mentum of the reference particle is not much larger than the
momentum deviation, i.e.,  is not small, 8, will be small.
Expanding the square-root term up to the third order yields
1+ 028 +32(82— B287) /2— 518 (62— B287) /2-+O(8%).
Ignoring both the zeroth-order terms, which do not play
a role in the Hamiltonian equations, and the first-order
terms, which cancel out since the reference particle fol-
lows the first-order solution, the Hamiltonian reduces to
H =H,+ Hs + -, where

k
Hy = (Wé—f”;‘-[&> +P<5L+ 6) )
2 2

Br 2
(g pra) 4 B
- (omn) 5 o )
2/\
-Gk (a0t @

The integer subscripts indicate which order to keep.
To simplify the linear dynamics given by H,, we make a
linear canonical transformation generated by

By = VB = S BRPE o PR @A ]

+ P’“(@A) } (9)

+(sc<—>y)+z[ 51
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The variables are transformed as

&= \Pre= B, (10)
’

pe = P o — [P 54 \[PE(0,4,),5, (1)

2=z (12)

Pz = ﬁz + Pﬁ(az/iz)r%a (13)

and the y dimension is similarly transformed. Note that
2 and ¢ are the so-called reduced coordinates. Under the
conditions

(0:A1), =0 and (9,A4,), = —(0:4,), 149
the new Hamiltonian reduces to
H, E ¢2 - P’,f A,
i
BE 1 92(PFA, | a2
+&+ _ Aky (0, 4,)2 | =
2 /Prk P? 0s 0x . 2
+ (z < y in the previous 2 terms)
R L L O .
~2 N 2( Dk A 52
p Dz 2 0 (P Az) <
Z_ . —= V,.A,)), + —Z 22| —. (15
202 A2 (es-Vode)r + 0s 0z 2 (19

The advantages of this transformation become clear now.
The complication dueto acceleration isreduced to a pseudo
focusing. The kinematic and potential terms are separated,
and the Hamiltonian resumes a familiar form. Note that,
until now, the treatment is generally valid under the condi-
tionsin Eq. (14).

LINEAR FOCUSING AND HAMILTONIAN

A typical axisymmetric injector consists of 7'My, accel-
erating field with vector potential (using the real part)

0o a )
A —E ny . ilwt—Kzn(s+2)+po]
T=E ) —Jolkrar)e ,

n=—oo

(16)

A = iEq Z Ben 0 1 ()t Ren (5420420 (17)

an w
and solenoid focusing field

Amae — (—Bs Y, bs x, O) . (18)
Here E,, is the amplitude of the space harmonic of in-
dex n and a,, = E,,/Eq. w isthe rf frequency. ¢ is
the initial rf phase from the zero-crossing at the origin.
The longitudinal and transverse wave numbers of the n-
th space harmonic (k.,, and k,.,,, respectively) are given by
kon = k.0 +2mn/dand k2, + k2, = k* = (£)?, whered

™

The internal space-charge force is modeled by an aver-
age static potential ¢§¢ in the beam frame. In thelab frame,

sc 6T sc qd)
LA =T 6%, —

¢ =, Asc (bé( (19)
Note that, using th@e relations, the space-charge contribu-
tion to the potential terms 7* gi) P’c A in Hamiltonian

reducesto ¢SC / BrYrs shovvlng the well-known cancellation
of electro and magnetic forcesin ultra-relativistic limit.
Under these forces, the linear Hamiltonian becomes

52 4 52 52 A2
pz +p T + 7 A A ~ A
Hy = =5+ K 2y — bs(ZDy — UPx)
L2 [PEa pEan) 2
26,73 0s 0z 022 2’
where the focusing strength K is given by
"
Pk R .
K(z,8) = —Y——— + 1+ — D2psc
T e e Y e
L *(PFAY) 2 ot
Ff W - (arAz )7’- (21)

Due to rotational symmetry, the angular momentum term
in Hy can be dropped with the understanding that the dy-
namical variables refer to the Larmor frame.

The last two termsin the focusing strength K are due to
the rf ponderomotive focusing. They contain fast oscilla-
tion of rf period that can be smoothed out as

K= <Krf>+<[ / ds (K™ - <Krf>>r> %2 0. (22)

Here ( ) means averaging over rf period. For standing
wave structure, £y = qFEo/28,v,mc?, Ey = 2Eq, and

n(po) =D onrp (‘1121 + a2, — 2anan41 COS 2900) [1]. The
total external electromagnetic focusing reducesto [2]

Ui n B, \
8 Ey

The pseudo focusing due to acceleration can be written as

em .~ 72
Kem o~ F?

(23)

1
Dk 2
VB 1<1+2><%’«) n
pr 4 ) \ B 2827

For synchronized acceleration, the energy gain per unit
length is approximately constant with

(24)

FEy si ~
= Lﬂ;% = BryrEo sin po. (25)
mc
Thus the total externa focusing strength becomes
Kot~ (EO sin ¢g)? (QQ + 1/4) , (26)

isthe period of rf structure. .Jy and J; arethe Bessel func-  Where )
tions. r is the radial coordinate. The normalized solenoid DL (CBS>
strength b5 = (¢/26,~v-mc)Bs(0,0, s). sin? g | 8 Ey
1477 0-7803-8859-3/05/$20.00 ©2005 IEEE



Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

The linear space-charge defocusing can be written as[2]

CIg(zs) 1
2y ol

where I g isthe slice current whose s dependenceisusually

ignored, 14 isthe Alfén current, and o,. is the transverse
beam size. Thetotal focusing strength K = Kt + K¢,

KS.C. — (27)

TRANSVERSE BEAM ENVEL OPE

Ignoring the longitudinal dynamics, the transverse dy-
namics of each z-dice is governed by the simple Hamil-
tonian (p2+p2)/2+K (s, 2) (&% +§?) /2, whose behavior is
well known and the beam envel ope is described by the stan-
dard Courant-Snyder parameters with the g-function satis-
fying vB" + K+v/B — 1/y/B?3 = 0. The normalized emit-
tancee,, isconserved for each dice under thisHamiltonian.
The rms beam size in reduced variable is 6, = /e,8 =
v/ B 0. Using 6,., the beta-function equation becomes
the beam-envelope equation 6 + K6, — €2 /62 = 0. In-
serting the above focusing strength we have

7 \2 7 \2 2
N Vo 2 1\ . Y S €
- Q - r ~ T 3 — 07
ot (ﬁr%) ( " 4) iy <67-%) G 53
(28)

where S = Ig/214(~/.)%. For a“space-charge dominated”
beam, which is considered here, the last emittance term
can be neglected. This equation is equivalent to the enve-
lope equation used in [2] and others. The differenceis that
we are using the reduced coordinates, which significantly
simplifies the particle dynamics. When €2 and S are inde-
pendent of s, an obvious solution of the reduced envelope
equation isgiven by 6/ = 6/ = 0 and

6y = iy = 4| o
r mv — QQ+1/4'

Thisisthe so-called invariant envel ope discussed obscurely
in[2]. See[3] for further discussions.

For small deviations from the invariant envelope, we can
linearize the envel ope equation around the invariant enve-
lopewith 6 = 6iny + 66 and get

(29)

56" +2(+'/By)*(Q* + 1/4)66 = 0. (30)

Solving this equation, we obtain the solution of the enve-
lope equation around the invariant envelope as

o = é-inv + \/750’(0) Cos (u + 9) ’ (31)
~Yo cos @
2 5
5 = — oz w? + 1 05(0) sin (u+6 —6y), (32
Yoy 4) cosf

where w = /202 + 1/4, 66,.(0) and §57.(0) are the ini-
tial envelope deviations, and 6y = tan~!(1/2w) and § =
tan—1[.L — 2092 O)) e phase angles determined by the
initial values. Estimating the emittance with the commonly

2w w66 (0)
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used two-slice approximation e = 1|5.6" —6_6"|,
and assuming one dice is the rms-matched invariant en-
velope 6.ms With 67, = 0 and the other is the dightly

mismatched edge slice oscillating around its own invari-
ant envelope according to the above expression, then ¢ =

5 Errmsfrgdge and we have
12 1 5Ae (&3 .
€ = Orms ’Z()’Y<W2+4> Jciigso(o)sul(u—i—é?—@g)
1 gl
x — |sin wln—|—0—0) . (33
Vel ( Yo °

It clearly shows that the correlated emittance is damped by
/7 and periodicaly returns to zero, which is the behav-
ior of an emittance-compensated beam [2]. The focusing
solenoid controls the emittance oscillation through w.

THIRD-ORDER HAMILTONIAN

The third-order transverse Hamiltonian can be worked
out as Hs = Hg + He. The geometric part reads
7sc ~2 ~2\ 5 2 A
_ 73 (:E + Yy )Z 0 A'r ~ A AA N\ A
He = Pk W 2 B <826T ‘ (EPs + UPy) %,

T

(PR (0*A\ [ oA
We = PTK 020r 0z0r2 |
The chromatic part reads

ﬁQ
He = —
7 T opr

where

p=[(P3 + P)) + we(2* + §7)]

!/

g (VB ) e
= Dz | == (D2 + 0Dy) — (OyAz)r (EDy —
P Pk

T
T

where

In emittance-compensated guns, the quasi-laminar beam
propagates around the invariant envelope, on which there
are no transverse momenta, and thus most of these nonlin-
ear terms could become insignificant. More detailed analy-
siswill be reported elsewhere.
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