
AN ACCELERATOR CONTROL MIDDLE LAYER USING MATLAB*

G. Portmann LBNL, Berkeley, CA 94720 U.S.A.
J. Corbett, A. Terebilo SRRL/SLAC, Stanford, CA, 94309 U.S.A.

Abstract
 Matlab is an interpretive programming language
originally developed for convenient use with the
LINPACK and EISPACK libraries. Matlab is appealing
for accelerator physics because it is matrix-oriented,
provides an active workspace for system variables,
powerful graphics capabilities, built-in math libraries, and
platform independence.
 A number of accelerator software toolboxes have been
written in Matlab - the Accelerator Toolbox (AT) for
model-based machine simulations, LOCO for on-line
model calibration, and Matlab Channel Access (MCA) to
connect with EPICS. The function of the MATLAB
‘Middle Layer’ is to provide a scripting language for
machine simulations and on-line control, including non-
EPICS based control systems. The Middle Layer has
simplified and streamlined development of high-level
applications including configuration control, energy ramp,
orbit correction, photon beam steering, ID compensation,
beam-based alignment, tune correction and response
matrix measurement.
 The database-driven Middle Layer software is largely
machine-independent and easy to port. Six accelerators
presently use the software package with more scheduled
to come on line soon.

INTRODUCTION
Matlab was originally used for machine control at the

ALS in the early 1990’s, shortly after commissioning. For
algorithm development, the combination of a matrix-
oriented programming language with built-in math
libraries, an active workspace for system variables, and
platform independence was quite desirable. In the
beginning it was primarily used as a scripting language
for accelerator physics studies but quickly found it’s way
into operations as well.

The fact that Matlab was reliable enough to run
operational code allowed one to produce machine control
and accelerator physics programs using the same
language. It is now is used for routine machine operation
(energy ramp, configuration save/restore, orbit correction
and feedback, and ID compensation) as well as machine
setup (beam-based alignment, tune and chromaticity
correction, LOCO, photon beam steering, etc.) and as a
scripting language for accelerator physics studies [1]. The
method of connection between Matlab and the control
system has changed over the years but the ALS presently
uses EPICS with Simple Channel Access (SCAIII).

At SSRL, parallel Matlab developments in the late
1990’s led to the Accelerator Toolbox (AT) to simulate
machine performance [2], Matlab Channel Access
Toolbox (MCA) for EPICS connections [3], an orbit

control gui [4], and LOCO for accelerator model
calibration [5]. In a collaborative effort between ALS and
SSRL, many of the control functions developed at the
ALS were ported to SSRL where the functionality was
extended, the software was re-structured to incorporate
MCA and made machine-independent. The entire
software package (AT, MCA, Middle Layer) was
successfully deployed and used extensively to
commission SPEAR 3 [6,7]. As a result, the Middle Layer
software is now easily ported to other machines [8].

SOFTWARE OVERVIEW
As shown in Fig. 1, the Middle Layer software provides

a library of functions that either communicate with
machine hardware for online applications or with AT for
model-based applications. It is important to note that
although the online get/set routines originally
communicated via EPICS Channel Access, they can now
communicate with a variety of control systems. There are
only two core functions that need to be re-programmed to
work with each new control system — getpvonline and
setpvonline.

One of the central features of the Middle Layer is to
simplify the channel naming scheme used by the host
control system. Channel names are often quite obtuse so
it is best not burden the programmer with hardware
nomenclature. The same is true for model-based
applications – locating and keeping track of numerical
element indices can be a cumbersome process. The
Middle Layer organizes element names into groups
(Families), subgroups (Fields), and uses a device
numerology that mimics naming schemes commonly used
in accelerator simulation codes. Element QF [3,1], for
example, refers to the first QF magnet on third magnet

* This work was supported U.S. Department of Energy under Contract
No. DE-AC03-76SF00098 and DE-AC03-76SF00515.

High Level Matlab Applications
(Scripts and Functions)

Matlab to EPICS
(MCA, LabCA, SCAIII)

Matlab Middle Layer

Accelerator Toolbox
(AT Model)

Channel Access to
Accelerator Hardware

AT Server
 (Simulator)

Figure 1: Software flow diagram.

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

4009 0-7803-8859-3/05/$20.00 c©2005 IEEE

raft. By using the Middle Layer, the same terminology
applies for both online and model-based applications.

At the heart of the Middle Layer is a the ‘Accelerator
Object’ data structure (AO). The AO maps the
Family/Device syntax to the control system hardware and
contains attributes for each Family (device list, channel
names, hardware-to-physics conversion factors, range
information, etc.) The AO resides in hidden memory
associated with the Matlab command window. By issuing
a simple Matlab command, the AO structures are
initialized and a software path is established to access the
Middle Layer functions and application programs.

A parallel structure, called Accelerator Data (AD),
contains directory locations, key file names and basic
accelerator parameters. Response matrix data, for
example, is automatically stored and retrieved from the
correct directories. The AD also resides in hidden
memory. A description of how to build the AO and AD
structures and how the file and function architecture are
arranged can be found in the Middle Layer manual [1].

MIDDLE LAYER NOMENCLATURE
 In a typical hardware control environment each device
is referenced via a specific channel name. Accelerator
physicists, however, often think in terms of hardware
families (dipoles, quadrupoles, BPMs, etc) and attributes
of the family elements (length, strength, gain, etc). In the
Middle Layer software, each family is represented in the
AO by a structure with well-defined fields. A further
division of each Family structure into Monitor and
Setpoint sub-structures keeps element attributes well
organized and fits neatly into the architecture of the
Middle Layer software functions.

MODES OF OPERATION
 The Middle layer software can be run in several
different modes. The ability to switch between online and
simulate modes is helpful for model-based analysis and to
debug software prior to deployment on the operating
accelerator. In the online mode, get/set calls are broadcast
over Ethernet to remote computers (EPICS IOC’s, for
example). The remote computers can either connect with
live hardware modules or function as a remote model
server [9]. The simulation mode directs get/set calls
directly to the local AT model. This mode is useful to
develop and test control programs and for programs not
intended for online use. In practice, get/set calls check to
see if the mode is online, simulator, manual, or special.
The manual mode prompts the user for manual data input
(e.g. tunes) while the special mode allows the user to
define an in-line function to numerically process data (e.g.
special unit conversion procedures). Similarly, the Middle
Layer can switch between hardware and physics units
depending on requirements of the particular software.

MIDDLE LAYER FUNCTIONS
 The Middle Layer function toolbox is well established
and continues to expand. At present, it contains over 100
functions.

Get and Set Functions
 These core functions communicate with control system
or the MATLAB Accelerator Toolbox. The two main
functions are getpv and setpv. Both functions accept a
variety of input formats via the Family/DeviceList
convention. Rather general calls are permitted and timing
requests are possible.

Utility Functions
 Utility functions allow easy conversion between
different fields in the Accelerator Object families.
Examples include family2channel (convert Family/Device
to channel names) and GetList (retrieve list of devices in a
Family). getfamilydata is an important utility function
used to access any information contained in the AO.

Shortcut Functions
 Shortcut functions are designed to reduce the number of
parameters required in a function call. Examples include
getsp and setsp which communicate with the device
setpoint, and getx/gety which return horizontal and
vertical beam position values. Shortcut functions are used
widely during machine physics studies and in application
program development.

Unit Conversion Functions
 Unit conversions play an important role in modeling the
on-line machine. For this purpose, the Middle Layer
supplies two functions hw2physics (hardware-to-physics)
and physics2hw (physics-to-hardware). The data flow
diagram shown below outlines the conversion algorithm
and associated parameters.

Simulator Functions
Using the argument ‘model’, Middle Layer functions can
access the AT model directly. Examples include
meastuneresp(‘model’) and getbpmresp(‘model’). All
Matlab functions in the AT toolbox are also available for
accelerator simulation.

Special Functions
 Special functions can communicate directly with the
AT model to return simulated physics parameters. For
example, getbeta returns the beta functions from the
model. In addition, some devices such as storage ring
tune do not conform neatly with the Family/Index
formalism so special functions are created to access the
data.

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

0-7803-8859-3/05/$20.00 c©2005 IEEE 4010

APPLICATION PROGRAMS
The Middle Layer software simplifies high-level

application programming for machine control and script
development for accelerator physics. Matlab scripts rely
heavily on Middle Layer software to perform correlated
perturb/measure studies. Application programs can be
dominated by user-interface software but again benefit
from the Middle Layer for data manipulation, file
handling and machine control. In both cases the Middle
Layer greatly simplifies communication with accelerator
hardware.

The Middle Layer also provides high-level functions
for common accelerator physics tasks. Examples include:

(1) measrespmat—measure response matrix
(2) getrespmat—read response data from files
(3) measdisp—measure the dispersion function

A centralized accelerator control gui PlotFamily launches
many high-level Middle Layer functions and can
graphically displays live data, simulated data or data
contained in the AO.

SUMMARY
The Matlab toolboxes written for accelerator

applications (AT, MCA, LOCO, Middle Layer) are well
integrated and have proven quite useful for machine
studies and control. The relatively user-friendly software
and machine-independent programming language have
fostered a number of collaborations. Most scientists find
the syntax quite intuitive making it possible for visitors to
participate in accelerator physics studies with minimal
training. To date, the software has been installed on six
machines (ALS, CLS, NSLS VUV, NSLS X-ray, PLS,
SPEAR3) and has received interest from other
laboratories including ASP, ALBA, CAMD, DIAMOND,
SOLEIL, and SSRF.

The Middle Layer requires a small, upfront investment
to build the AO, AD and AT-model files in order to install
on a new accelerator. The complete software can be made

functional for most applications within a few days and be
fully operational in a few weeks, including exercising
routines in the simulate and online modes. Developing a
fully calibrated online model with accurate hardware-to-
physics conversion parameters is the most time-
consuming part of the setup.

Having multiple laboratories use the same high level
software has proven to be quite useful.
• Not every laboratory has to spend the resources to

write the same algorithms. For new laboratories
it’s a very fast and inexpensive way to acquire high
level control and simulation software.

• Having one software package that is debugged at
many laboratories improves reliability. Thousands
of dedicated accelerator hours have been spent
testing, debugging and improving the
AT/MCA/Middle Layer software packages.

• As with any collaboration, software expansion,
suggestions, and new ideas come from a bigger
pool of participants.

• The number of physicists and engineers trained on
the Middle Layer is growing rapidly. Visiting
scientists can work immediately on the new
accelerator. This was very useful for SPEAR 3
commissioning.

• Since it’s easy to switch between different
accelerators in the simulation mode, it’s easy to test
algorithms on different accelerators.

ACKNOWLEDGEMENTS
The authors would like to thank the ALS/LBNL and

SPEAR/SLAC management for encouraging and
supporting a productive collaboration on the Middle
Layer. We would also like to thank the staff members at
the laboratories that use the Middle Layer for the helpful
suggestions that everyone has made along the way.

REFERENCES
[1] G. Portmann, J. Corbett, A. Terebilo, “Middle Layer

Software Manual for Accelerator Physics,” LBNL
Internal Report, LSAP-302, 2005.

[2] A. Terebilo, “Accelerator Modeling with MATLAB
Accelerator Toolbox,” PAC 2001.

[3] A. Terebilo, “Channel Access Toolbox for MATLAB,”
ICALEPCS 2001.

[4] J. Corbett et al., “Orbit Control Using MATLAB,”
 PAC 2001.
[5] J. Safranek, G. Portmann, A. Terebilo and C. Steier,

"MATLAB Based LOCO," EPAC 2002.
[6] J. Corbett, G. Portmann, A. Terebilo, J. Safranek,

"SPEAR 3 Commissioning Software," EPAC 2004.
[7] J. Safranek et al, "SPEAR 3 Commissioning," APAC

2004.
[8] J. Corbett, A. Terebilo, G. Portmann, “Accelerator

Control Middle Layer,” PAC 2003.
[9] A. Terebilo, “Simulated Commissioning of SPEAR 3,”

PAC 2003.

MiddleLayer Data Flow DiagramMiddleLayer Data Flow Diagram

Accelerator
Hardware AT Model

Hardware
Units

(Usual Command
Window Location)

Calibrated
Hardware

Units

Physics Units

(Opt. Command
Window Location)

BPM and Corrector
Coordinate Change

raw2real
real2raw

hw2physics
physics2hw

getpvonline
setpvonline

getpvmodel
setpvmodel

BPM
•Gain (Units scaling)

Correctors
(amp2k, k2amp)
•Gain (amps to rad.)
•Energy Scaling

Lattice Magnets
(amp2k, k2amp)
•Gain (amp to K)
•Energy Scaling
•Hysteresis

RealData = Gain*(RawData - Offset)

BPM
•Gain (LOCO)
•Offset (BBA)

Correctors
•Gain (LOCO)

Lattice Magnets
•Gain (LOCO)

BPM
•Roll, Crunch

Correctors
•Roll
•Correction offset

Lattice Magnets
•Correction offset
•All other known
errors are already in
the AT model.

Data flow for getpv and setpv

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

4011 0-7803-8859-3/05/$20.00 c©2005 IEEE

