DISPERSION ANALYSIS OF THE PULSELINE ACCELERATOR*

G. J. Caporaso1, R. J. Briggs2, B. R. Poole1, S. D. Nelson1
1Lawrence Livermore National Laboratory, Livermore, CA 94551, U.S.A.
2Science Applications International Corporation, Alamo, CA 94507, U.S.A.

Abstract
We analyze the sheath helix model of the pulseline accelerator [1]. We find the dispersion relation for a shielded helix with a dielectric material between the shield and the helix and compare it against the results from 3-D electromagnetic simulations. Expressions for the fields near the beam axis are obtained. A scheme to taper the properties of the helix to maintain synchronism with the accelerated ions is described. An approximate circuit model of the system that includes beam loading is derived.

INTRODUCTION
It has been recently recognized by Briggs that the well-known slow wave structure consisting of a helix wound over an evacuated beam tube, an outer dielectric layer and an outer conductor can be used to accelerate ions [1]. When a pulse is injected into this system by impressing a voltage between the helix and outer conductor a longitudinal electric field will be generated along the helix that persists on the axis if certain conditions are satisfied. The magnitude of the electric field along the helix is roughly given by

\[E_z \approx \frac{1}{v_p} \frac{\partial V}{\partial t} \] (1)

where \(v_p \) is the phase velocity of the propagating voltage wave of amplitude \(V \). The helix has non-local coupling due to mutual inductance and capacitance between the windings that gives rise to dispersion. As the ions gain energy from the propagating wave their speed increases and they can lose synchronism with the accelerating field unless the properties of the helical structure are tapered in the appropriate way. There are several operating modes of the helix with respect to whether or not the wave is in synchronism with the particles. In this paper we consider only the mode in which the particles move synchronously with the wave.

FIELD MODEL
Consider the geometry shown in Figure 1. The helix has radius \(a \) and the outer conductor has radius \(b \). Between the helix and the outer conductor is a dielectric. The interior of the helix is in vacuum.

\[\nabla^2 - \frac{\varepsilon}{c^2} \frac{\partial^2}{\partial t^2} \begin{pmatrix} E_z \\ B_z \end{pmatrix} = 0 \] (2)

while in the interior vacuum region we have

\[\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \begin{pmatrix} E_z \\ B_z \end{pmatrix} = 0. \] (3)

We will use the sheath helix model to find the fields in this structure [2]. In the dielectric layer of relative permittivity \(\varepsilon \) we have

\[\begin{pmatrix} \varepsilon \frac{\partial}{\partial t} \\ \frac{\partial}{\partial t} \end{pmatrix} \begin{pmatrix} E_z \\ B_z \end{pmatrix} = 0 \]
\[
\begin{bmatrix}
\tilde{E}_z \\
\tilde{B}_z
\end{bmatrix} =
\begin{bmatrix}
C \\
D
\end{bmatrix} I_o(pr) +
\begin{bmatrix}
D \\
F
\end{bmatrix} K_o(pr)
\]
(6)

\[
\begin{bmatrix}
\tilde{E}_z \\
\tilde{B}_z
\end{bmatrix} =
\begin{bmatrix}
A \\
B
\end{bmatrix} I_o(\mu r)
\]
(7)

By using the Maxwell curl equations all the other field components may be determined from \(E_z \) and \(B_z \). By imposing the condition that \(E_z \) and \(B_r \) vanish at \(r = b \) we find that for \(a < r < b \)

\[
\tilde{E}_z = C I_o(pr) - D I_o(pb) K_o(pr)
\]
(8)

\[
B_z = E I_o(pr) + D I_1(pb) K_o(pr)
\]
(9)

Next, we impose the conditions the electric field tangential to the helix vanishes

\[
\tilde{E}_z \sin \psi + \tilde{E}_\phi \cos \psi = 0
\]
(10)

and that the tangential magnetic field \(B_z \sin \psi + B_\phi \cos \psi \) is continuous across the helix [3].

Here the pitch angle \(\psi = \cot^{-1}(\frac{2\pi a}{L}) \) where \(L \) is the pitch of the helix, the distance between adjacent windings. Imposing the continuity of \(E_z \) at \(r = a \) allows the determination of all of the unknown 6 coefficients in terms of one remaining coefficient. Taking appropriate ratios of field components allows us to obtain the dispersion relation

\[
\left(\frac{\alpha a}{c} \right)^2 \cot^2 \psi = \frac{\mu a I_0(\mu a) + I_0(pa)}{I_1(\mu a) + pa I_1(pb)}
\]

\[
\frac{\mu a I_0(\mu a)}{I_1(\mu a)} + \frac{K_o(pa)}{K_i(pb)} I_0(pa)
\]

\[
\frac{I_1(\mu a)}{\mu a I_0(\mu a)} + \frac{\varepsilon}{\mu a} \frac{K_o(pb)}{K_i(pb)} I_0(pb)
\]

(11)

which agrees with the result obtained by Anicin [4]. A plot of \(\omega a/c \) vs. \(ka \) is shown in Figure 2.

Results of a 3-D finite difference time domain electromagnetic code XFDTD show good agreement with equation (11) [5].

Taking the limit of equation (11) as \(ka \) approaches zero yields the phase velocity \(\omega/k \) as

\[
\nu_p = \frac{c}{\sqrt{\varepsilon}} \frac{2\ln(b/a)}{\left(1 - \frac{a^2}{b^2} \right) \cot^2 \psi + 2\ln(b/a)}
\]
(12)

From equation (7) and the definitions of \(\mu \) and \(\nu_p \) we find that

\[
\tilde{E}_z = \tilde{E}_{wall} \frac{\omega}{\gamma \nu_p}
\]
(13)

where

\[
\gamma = \frac{1}{\sqrt{1 - \frac{\nu_p^2}{c^2}}}
\]
(14)

From equation (13) we can see that the on-axis gradient is preserved provided that

\[
\frac{\alpha a}{\gamma \nu_p} < 1.
\]
(15)

By relating the current in the helix to the fields all the field components can be determined. We need to calculate the jump in \(B_z \) and \(B_\phi \) across the helix

\[
B_{zz} - B_{z<} = \frac{2I_s}{ca}
\]
(16)
\(B_{s} - B_{h} = \frac{2I_{z}}{ca}. \) \((17) \)

From the sheath helix model we have the boundary condition \[2\]

\[I_{\phi} \sin \phi - I_{z} \cos \phi = 0. \] \((18) \)

From the field solution we have

\[\tilde{E}_{z} = -\frac{k}{p^{2}} \frac{\partial \tilde{E}_{z}}{\partial r}. \] \((19) \)

which can be related to the voltage across the line as

\[\tilde{V} = \frac{ik\tilde{E}_{z}}{p^{2}} = \frac{ikAl_{z}(\mu a)}{p^{2}}. \] \((20) \)

In the low frequency limit A can be related to the current as

\[A = -\frac{i \omega a I_{z}}{c} \cot \psi \left(1 - \frac{a^{2}}{b^{2}} \right). \] \((21) \)

Using equations (20) and (21) to relate the voltage to the current yields the characteristic impedance (in the low frequency limit) as

\[Z = \frac{Z_{0}}{4 \pi \sqrt{\epsilon}} \cot \psi \sqrt{1 - \frac{a^{2}}{b^{2}}} 2 \ln \frac{b}{a}. \] \((22) \)

TAPERED LINE FOR SYNCHRONOUS OPERATION

As the ions accelerate in the field of the traveling wave they will accelerate and lose synchronism with the pulse. In order to maintain synchronism the wave speed must remain equal to the ion speed

\[v_{p} = \frac{1}{\sqrt{LC}} = v_{i}. \] \((23) \)

In order that the gradient remain constant we must have

\[E_{z} = \frac{1}{v_{p}} \frac{\partial V}{\partial t} \Rightarrow V = \frac{const a t}{v_{p}}. \] \((24) \)

As we vary the parameters of the line the impedance will change. The voltage on the line will scale as the square root of the impedance. Thus we must have

\[(L/C)^{1/4} v_{p} = const. \] \((25) \)

Combining equations (23) and (25) gives the tapering

\[L \propto \frac{1}{C^{1/3}} \propto v_{i}. \] \((26) \)

BEAM LOADING

An approximate circuit model that incorporates the effects of beam loading may be written by assuming that the dispersion in the helix is small so that the propagation of electromagnetic waves is governed by the transmission line equations. We add a term proportional to the line density of the bunch

\[\frac{\partial V}{\partial z} = -L \frac{\partial A}{\partial t} \] \((27) \)

\[\frac{\partial A}{\partial z} = -C \frac{\partial V}{\partial t} + \frac{\partial \lambda_{b}}{\partial t} \] \((28) \)

where L and C are respectively, the inductance and capacitance per unit length and \(\lambda_{b} \) is the line charge density of the bunch.

SUMMARY

We have obtained the dispersion relation for a helix wound inside of a dielectric shell that is encased by a conducting cylinder. From the field solution in the sheath helix model we have obtained expressions for the low frequency phase velocity and characteristic impedance as well as the fields. The tapering prescription necessary to maintain synchronous acceleration with constant gradient has been derived and a simple model of beam loading has been presented.

REFERENCES