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Abstract 

We analyze the sheath helix model of the pulseline 
accelerator [1].  We find the dispersion relation for a 
shielded helix with a dielectric material between the 
shield and the helix and compare it against the results 
from 3-D electromagnetic simulations.  Expressions for 
the fields near the beam axis are obtained.  A scheme to 
taper the properties of the helix to maintain synchronism 
with the accelerated ions is described.  An approximate 
circuit model of the system that includes beam loading is 
derived. 

INTRODUCTION 
It has been recently recognized by Briggs that the well-

known slow wave structure consisting of a helix wound 
over an evacuated beam tube, an outer dielectric layer and 
an outer conductor can be used to accelerate ions [1].  
When a pulse is injected into this system by impressing a 
voltage between the helix and outer conductor a 
longitudinal electric field will be generated along the 
helix that persists on the axis if certain conditions are 
satisfied.  The magnitude of the electric field along the 
helix is roughly given by  

 

Ez ≅
1
v p

∂V
∂t

   (1)   

where vp is the phase velocity of the propagating voltage 
wave of amplitude V.  The helix has non-local coupling 
due to mutual inductance and capacitance between the 
windings that gives rise to dispersion.  As the ions gain 
energy from the propagating wave their speed increases 
and they can lose synchronism with the accelerating field 
unless the properties of the helical structure are tapered in 
the appropriate way.  There are several operating modes 
of the helix with respect to whether or not the wave is in 
synchronism with the particles.  In this paper we consider 
only the mode in which the particles move synchronously 
with the wave. 

FIELD MODEL 
Consider the geometry shown in Figure 1.  The helix 

has radius a and the outer conductor has radius b.  
Between the helix and the outer conductor is a dielectric.  
The interior of the helix is in vacuum. 

We will use the sheath helix model to find the fields in 
this structure [2].  In the dielectric layer of relative 
permittivity ε we have 
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while in the interior vacuum region we have 
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Figure 1: Schematic of helix, dielectric sleeve and outer 
conductor. 

In the sheath helix model the actual fine structure of the 
helix is ignored which is a reasonable approximation for 
wavelengths that are long compared to the pitch or 
spacing of the helical windings.  If we let all quantities 
vary as exp[i(kz-ωt)] the field equations become 
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where equation (4) applies to the region a < r < b and 
equation (5) applies to the region r < a.  The tildes 
indicate Fourier amplitudes.  If we make the definitions 
p2=k2-εω2/c2 and µ2=k2-ω2/c2 then the appropriate 
solutions of equations (4) and (5) are 
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b
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By using the Maxwell curl equations all the other field 

components may be determined from Ez and Bz.  By 
imposing the condition that Ez and Br vanish at r = b we 
find that for a < r < b 
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Next, we impose the conditions the electric field 
tangential to the helix vanishes 

 
˜ E z sinψ + ˜ E φ cosψ = 0  (10) 

 
and that the tangential magnetic field Βzsinψ+Bφcosψ is  
continuous across the helix [3].   

Here the pitch angle ψ = cot-1(2πa/L) where L is the  
pitch of the helix, the distance between adjacent 
windings.  Imposing the continuity of Ez at r = a allows 
the determination of all of the unknown 6 coefficients in 
terms of one remaining coefficient.  Taking appropriate 
ratios of field components allows us to obtain the 
dispersion relation 

 
(11) 

 
which agrees with the result obtained by Anicin [4].  A 
plot of ωa/c vs. ka is shown in Figure 2. 
 
 
 
 

Figure 2: Plot of ωa/c vs. ka for the case ε = 1, ψ = .01 
and b/a = 1.5. 

Results of a 3-D finite difference time domain 
electromagnetic code XFDTD show good agreement with 
equation (11) [5]. 

Taking the limit of equation (11) as ka approaches zero 
yields the phase velocity ω/k as 
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From equation (7) and the definitions of µ and vp we 

find that  
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where  
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From equation (13) we can see that the on-axis gradient is 
preserved provided that 
 

ωa
γvp

<1.  (15) 

By relating the current in the helix to the fields the all 
the field components can be determined.  We need to 
calculate the jump in Bz and Bφ across the helix 
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From the sheath helix model we have the boundary 

condition [2] 
 

Iφ sinφ − Iz cosφ = 0.  (18) 
 

From the field solution we have 
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which can be related to the voltage across the line as 
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In the low frequency limit A can be related to the 

current as 
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Using equations (20) and (21) to relate the voltage to 

the current yields the characteristic impedance (in the low 
frequency limit) as 
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TAPERED LINE FOR SYNCHRONOUS 
OPERATION 

As the ions accelerate in the field of the traveling wave 
they will accelerate and lose synchronism with the pulse.  
In order to maintain synchronism the wave speed must 
remain equal to the ion speed 

vp =
1
LC

= vi .  (23) 

 
In order that the gradient remain constant we must have 
 

Ez =
1
vp

∂V
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⇒
V
v p

= constan t . (24) 

As we vary the parameters of the line the impedance will 
change.  The voltage on the line will scale as the square 
root of the impedance. Thus we must have 

 
L /C( )1/ 4
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Combining equations (23) and (25) gives the tapering 
 

L ∝
1

C1/ 3 ∝vi.  (26) 

BEAM LOADING 
An approximate circuit model that incorporates the 

effects of beam loading may be written by assuming that 
the dispersion in the helix is small so that the propagation 
of electromagnetic waves is governed by the transmission 
line equations.  We add a term proportional to the line 
density of the bunch 
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where L and C are respectively, the inductance and 
capacitance per unit length and λb is the line charge 
density of the bunch. 

SUMMARY 
We have obtained the dispersion relation for a helix 

wound inside of a dielectric shell that is encased by a 
conducting cylinder.  From the field solution in the sheath 
helix model we have obtained expressions for the low 
frequency phase velocity and characteristic impedance as 
well as the fields.  The tapering prescription necessary to 
maintain synchronous acceleration with constant gradient 
has been derived and a simple model of beam loading has 
been presented. 
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