
 

AUTOMATED BEAM STEERING USING OPTIMAL CONTROL* 
C.K. Allen#, Los Alamos National Laboratory, Los Alamos, NM, USA 

E. Schuster, Lehigh University, Bethelehem PA, USA 
  

Abstract 
We present a steering algorithm which, with the aid of a 

model, allows the user to specify beam behavior 
throughout a beamline, rather than just at specified beam 
position monitor (BPM) locations.  The model is used 
primarily to compute the values of the beam phase vectors 
from BPM measurements, and to define cost functions 
that describe the steering objectives.  The steering 
problem is formulated as constrained optimization 
problem; however, by applying optimal control theory we 
can reduce it to an unconstrained optimization whose 
dimension is the number of control signals. 

INTRODUCTION 
Steering and orbit correction for charged particle beams 

has been extensively studied and many laboratories have 
developed successful algorithms for these applications.  
Some of the most popular (and effective) techniques are 
the MICADO [2] and SVD [5], and virtual BPM [4].  
Some techniques require access only to actuator settings 
(e.g., steering magnets) and sensor signals (e.g., BPMs), 
while others employ some type of model or response 
matrix.  The objective of almost all steering algorithms is 
to minimize the RMS error between the measured beam 
positions and the design trajectory, that is, to put the beam 
on the design axis or hit a target position. 

Here we present an alternate steering algorithm which 
is essentially a dual to the response matrix approach. 
Whereas response matrices forward propagate actuator 
strengths to the changes in the beam position, the current 
technique backward propagates changes in the beam 
position back to the actuators. The advantage here is that, 
given a beamline model, we may specify performance 
conditions upon the beam trajectory between BPM 
locations. That is, the steering algorithm considers beam 
behavior throughout the entire beamline. For example, we 
may require that the beam maintains proximity to the 
design axis, or specify that the beam is not steered too 
abruptly, or use some combination of either objective.   

We formulate the beam steering objective as an optimal 
controls problem. First we develop the beamline model 
based upon transfer functions between measurement 
positions. We then describe a performance objective as a 
cost functional of the beam states and actuator strengths. 
This functional contains user-specified tuning parameters 
that describe what he or she considers an optimally 
steered beam. Optimal control theory then provides a 
theoretical framework to solve the problem. 

The major drawback in this approach is that we require 
the full beam state vector at each measurement location.  

Specifically, we require the momentum coordinates as 
well as the position coordinates. Measurements from 
BPMs provide only the position coordinates.  However, 
there are methods, known as state observers [6], for 
constructing the momentum coordinates from multiple 
BPM measurements (at least approximately).  Due to 
space constraints we do not cover these techniques and 
simply assume we have access to the full beam states. 

DYNAMICS MODEL 
In the beamline model the state of the beam z(s), at 

axial location s is represented by an element of phase 
space. Somewhat unconventionally, we parameterize 
phase space using homogeneous coordinates in ℜ6×{1}. 
An element z in phase space is represented as 

( )Tzzyyxx 1′′′≡z ,  (1) 
where the prime indicates differentiation with respect to 
the path length parameter s, and x,y,z are the position 
coordinates of the beam.  Note that homogeneous 
coordinates contain an additional constant component 
with value 1.  This approach has the advantage that 
translation, rotation, and scaling in phase space can all be 
performed by matrix multiplication.  In particular, the 
effect of a steering magnet can be represented as a matrix 
action on the beam state z (see [1]).   

We now divide the beamline into stages corresponding 
to the contiguous sections of beamline between 
measurement locations.  Letting sn be the axial position of 
the entrance to stage n, define the states zn = z(sn) for n = 
0,1…N, where N is the number of stages.  Each stage n is 
then represented by a transfer function Fn(zn,un) of the 
beam state zn and the control vector un.  The control 
vector represents any actuators within the stage (e.g., 
steering magnets).  The beam state vectors are propagated 
according to the transfer equations 

1,,1,0),(1 −==+ Nnnnnn KuzFz  (2) 
where the first state z0 is given.  In controls parlance, this 
is the model of a multistage control network.  Although 
the transfer functions {Fn} may include higher-order 
dynamics, most beamline stages can be modeled 
accurately enough as a transfer matrix Φn(un) ∈ ℜ7×7.   

THE STEERING PROBLEM 
The idea here is to provide a performance object 

associated with each stage n.  This objective is embodied 
with a positive cost functional Jn(zn,un). Minimizing 
Jn(zn,un) gets us closer to our objective.  The crux is to 
prescribe a Jn general enough to accommodate our 
steering objectives, yet not so complicated as to be 
impractical.  The functional we propose has the form 
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where Q ∈ ℜ7×7 is a positive matrix of tuning parameters 
and z(s) is the (continuous) state vector within the stage.  
Clearly the state z(s) must be determined from a beamline 
model given the state zn at the stage n and the control 
signals un to the stage. 

To demonstrate the computation of a meaningful merit 
functional Jn we present that for a drift space.  Its transfer 
function is a matrix-vector product involving only the 
state vector zn; it is the simplest meaningful example we 
can present without getting mired in large algebraic 
expressions.  To further reduce the analysis we compute 
Jn only for the x plane. Thus, neglecting the homogeneous 
coordinate, our reduced state variable is xn = (xn xn’)T and 
x(s) is given by 
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Substituting the above into Eq. (3) yields the expression 
for the partial cost functional Jd for the drift 
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where ld is the length of the drift. 
It is common in accelerator applications to also require 

conditions on the final state zN. For example, we may 
want to insure that the beam hits a specified target 
location or interaction point, represented by the target 
state zf. This terminal objective may also be described by 
a cost functional, say φ(zN).  Given our target state zf, an 
appropriate form for φ(zN) is given by 

( ) ( )fN
T

fNN zzPzzz −−≡)(φ ,  (6) 

where P ∈ ℜ7×7 is another positive matrix.   
The complete steering objective is found by summing 

all the partial cost functionals {Jn} and φ to form the total 
cost functional J for the beamline.  We have 
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Note that J then depends upon the full set of beamline 
states {z0,z1,…,zN} and controls {u0,u1,…,uN-1}.   

We now formally state our steering problem: given an 
initial state vector zi at the entrance of our system, find the 
set of controls {u0,u1,…,uN1} minimizing the objective 
functional J while satisfying the dynamics of Eqs (2), or  
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which is the formal mathematical statement.  By selecting 
the matrices P and Q, and their relative magnitudes, we 
can stipulate different performance objectives for our 
beam steering algorithm.  We demonstrate this concept in 
the simulation results section. 

OPTIMAL CONTROL  
Optimal control problems are formally analogous to the 

classical mechanics of physics.  They share the same 
mathematical structure and can be analyzed using 
Hamiltonian formalism, symplectic geometry, and other 
tools born out of mechanics.  In this analogy the potential 
energy of the system is given by the merit functional J 
while the kinetic energy involves the state equations.  To 
proceed we require the introduction of a set of costate 
vectors {p0,…,pN} analogous to the conjugate momentum 
of Hamilton mechanics. We now define a Hamiltonian 
Hn(zn,pn+1,un), which is a function of “position” n, as 

),(),(),,( 11 nnn
T

nnnnnnnn JH uzFpuzupz ++ +≡ .  (9) 
From the optimal control theory, necessary conditions for 
solutions to problem (8) are given by the following [3]: 
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The above equations for {zn} and {pn} are the discrete 
version of Hamilton’s equations, while the final relation is 
known as Pontryagin’s minimum principle. Together they 
characterize the optimal control set {un}. Note that the 
state vectors {zn} propagate forward according to action 
of the transfer functions {Fn} while the costate vectors 
{pn} propagate backwards (covariantly).  Specifically, the 
costates are one-forms that are “pulled back” by the 
differential mappings {Fn}, with the addition of an 
inhomogeneous term ∂Jn/∂zn (also a one-form) reflecting 
the degree by which we “missed” our objective Jn. 

The Steering Algorithm 
Although insightful, the above system can be difficult 

to solve.  Fortunately it is not necessary.  It can be shown 
that, for any stage n, the gradient of the total objective 
functional J with respect to the control un is given by 
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if {zn} and {pn} satisfy Hamilton’s equations in (10).  
With the gradients {∂J/∂un} we may employ any standard 
unconstrained optimization technique to minimize J and, 
consequently, solve our steering problem. Thus, we have 
all the ingredients for a practical steering algorithm. 
Specifically, for some given error tolerance ε our steering 
algorithm is outlined in Algorithm 1. We have found that 
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this technique is much faster and more accurate than 
attempting to numerically compute the gradients 
{∂J/∂un}. 

SIMULATION RESULTS 
To verify our steering algorithm we applied it to a 

model beamline consisting of an initial drift followed by a 
FODO lattice of 20 periods. Steering magnets were placed 
at the center of each quadrupole. The drift lengths were 
14.88 cm while the quadrupole lengths were 6.10 cm. 
Quadrupole strengths were set for phase advance of 90 
degrees. We assume access to the beam states {zn} at each 
drift. For simplicity we considered only the x phase plane.  
In each case the beam enters the channel with an offset of 
0.3 cm, that is, xi = (0.003 0)T and our target final state is 
xf = (0 0)T. We implemented the Polak-Ribiere variant of 
the nonlinear conjugate-gradient algorithm in conjunction 
with Armijo’s rule [7].   

Four cases were run: each identified by the tuning 
matrices {P1,Q1}, {P2,Q2}, {P3,Q3}, and {P4,Q4}. The 
first two cases are shown in Figure 1. In these two cases 
only terminal condition were enforced, that is Q1 = Q2 = 
0. Case 1 stipulates only that the beam be on-axis at the 
final position. In case 2 we required that the beam state xN 
be exactly xf. These objectives are enforced with 
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where I is the identity matrix. For both cases we see 
betatron oscillations throughout the channel. Case 1 exits 
on target, although with nonzero slope. In case 2 the beam 
leaves the channel on-axis with zero slope. 

Case 3 and 4 are shown in Figure 2. In both these cases 
we enforce the final constraint xN = xf by setting the 
terminal tuning matrix P3 = P4 = I. Case 3 requires that 
the beam maintain proximity to the design axis 
throughout the channel while case 4 stipulates that the 

slope of the beam should minimized throughout. These 
two objectives are specified by choosing 
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In Figure 2 we see that in case 3 the beam is brought onto 
the design axis quickly then maintains a close proximity 
to the axis. In case 4 the beam is also brought onto the 
axis, however not as rapidly. This result makes sense 
since we cannot act on the beam as strongly as in case 3.   

CONCLUSIONS AND FUTURE WORK 
We have presented an alternative steering algorithm 

which, with the aid of a model, allows the user to specify 
beam behavior through a beamline, rather than just at 
specified BPM locations. It is also flexible enough to 
accommodate a variety of steering objectives simply by 
selecting different tuning parameters.  

It would be interesting to apply a similar approach to 
the beam shaping problem. There the beam states would 
be the matrices of second-order moments, the controls 
would be the quadrupole strengths, and the cost 
functionals would describe shaping objectives for the 
beam.  We speculate that the approach could be successful 
for a linear beam optics model.   
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Figure 1: simulation cases 1 and 2 

Figure 2: simulation cases 3 and 4 

while J > ε : forward propagate the {zn}; 
  backward propagate the {pn}; 
  compute the {∂J/∂un}; 
  update the control vectors {un};
  compute J;  

Algorithm 1: optimal steering algorithm 
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