
THE FERMILAB LATTICE INFORMATION REPOSITORY∗

J.-F. Ostiguy, L. Michelotti, M. McCusker-Whiting, M. Kriss
FNAL, Batavia, IL 60540, USA

Abstract

Over the years, it has become increasingly obvious that
a centralized lattice and machine information repository
with the capability of keeping track of revision informa-
tion could be of great value. This is especially true in
the context of a large accelerator laboratory like Fermilab
with six rings and sixteen beamlines operating in various
modes and configurations, constantly subject to modifica-
tions, improvements and even major redesign. While there
exist a handful of potentially suitable revision systems -
both freely available and commercial - our experience has
shown that expecting beam physicists to become fully con-
versant with complex revision system software used on an
occasional basis is neither realistic nor practical. In this pa-
per, we discuss technical aspects of the FNAL lattice repos-
itory, whose fully web-based interface hides the complex-
ity of Subversion, a comprehensive open source revision
system. The FNAL repository has been operational since
September 2004; the unique architecture of Subversion
has been a key ingredient of the technical success of its im-
plementation.

INTRODUCTION

When the SSC project was starting in the early 1990s,
relational database technology was coming of age. At the
time, researchers at the SSC and other large accelerator fa-
cilities including Fermilab, considered using database tech-
nology to track lattice configuration and revisions. Early
enthusiasm was quickly tempered by high costs and a gen-
erally inadequate basic software infrastructure. While it
was generally agreed that keeping track and disseminating
lattice information electronically would be beneficial, ac-
celerator scientists could not justify the time and effort in-
volved in dealing with cumbersome and cryptic software.

In the early 2000s, the Fermilab Collider Run II was fac-
ing technical difficulties. Many groups, both internal and
external were interested in acquiring authoritative informa-
tion about the optics of the Tevatron, the anti-proton source
and associated transfer lines. Despite the best intentions,
the process of getting in touch with the right people, getting
hold of the right version and tracking last minute changes
was time-consuming and potentially error-prone. The In-
ternet revolution of recent years spawned a considerable
amount of high quality software; this prompted us to re-
visit efforts to put together a system to electronically track
lattice revisions.

∗Work supported by the U.S. Department of Energy under contract No.
DE-AC02-76CH03000.

OBJECTIVES

The high level and most important objective can be sim-
ply stated: the system should not require any specialized
knowledge on the part of its users. More specifically our
objectives were the following:

• Web-based Interface: a design based on a platform
independent web-based interface makes lattice infor-
mation accessible from any machine equipped with a
browser.

• Authentication: Read access to lattice information
should be anonymous, i.e. no user authentication re-
quired. In contrast, user authentication is necessary to
control uploading of new lattice files.In that case, one
should take maximum advantage of the existing au-
thentication infrastructure rather than require people
to create and forget yet another password.

• Historical information tracking: the lattice repository
must be able to keep track of file history e.g. creation
date, submittor, author etc. It must also be possible to
retrieve any revision of a given file.

• Differences: lattice information files have character-
istics that make them closer to source code than or-
dinary text documents. While lattice files are human-
readable, they are ultimately meant to be read by com-
puter programs. Subtle differences can be difficult to
spot and for this reason, the ability to track and clearly
display changes is essential.

• Tagging: in some cases, lattice description files are
meant to be used as a group. It should be possible to
assign a common tag or label to a number specific files
and a mechanism should be provided to retrieve all the
tagged files as a bundle.

• Integration with optics applications: a generic mech-
anism to allow programs (such as our optics program
CHEF [3]) to retrieve files directly from the repository
would be desirable.

VERSION CONTROL SYSTEMS

The above requirements have a large intersection with
the features of a software version control system. Years
ago, such systems were proprietary, platform specific and
expensive. The advent of the Internet enabled software
projects involving developers in different physical loca-
tions and drove development of new products. Among the
most successful and well-known is CVS. Its popularity and

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

0-7803-8859-3/05/$20.00 c©2005 IEEE 1066

dominance arose from many factors, but the most impor-
tant ones were a pragmatic approach to the problem posed
by multiple developers working concurrently on the same
file and openness and availability of the source code.

In the CVS model, all files under control are stored
in a centralized repository. Recently, a new paradigm
for revision control software has been gaining momen-
tum: distributed revision control systems. These systems
(e.g. Monotone, DARCS and Arch) do away with a sin-
gle centralized repository in favor of peer-to-peer architec-
ture. Each developer keeps a repository, and the tools al-
low easy manipulation of changes between systems over
the network. In contrast to software files in a large project,
lattice information files are generally not heavily dependent
on each other and do not undergo significant changes on a
daily basis. The “developers” are typically concentrated in
one or perhaps a few facilities.In that context, the overhead
and the complexity associated with a decentralized system
would be difficult to justify.

A determinant consideration for our requirements was
that revision control integrate gracefully with web-based
interfaces. In many systems, including CVS, operations on
the repository must be performed either through a mono-
litic command line client or a crude network protocol; inte-
gration with a web interface typically implies parsing text
output. This approach results in a brittle design subject
to failure whenever the client produces unexpected out-
put (due to unexpected input data for example) or due to
changes output format modifications following a new re-
lease.

Subversion

In late 2003, Subversion, a new centralized revision
control system was about to be released. To capitalize on
the the popularity of CVS, it was designed as a highly
compatible replacement for CVS, from the standpoint of
the its high level user interface. The internal architecture
of Subversion however, differs substantially from that of
CVS. Among other things, the core functionality is imple-
mented in libraries. These libraries are called by the stan-
dard client but can also be called directly from custom code
written in scripting languages such as Perl and Python for
which bindings are provided. By design, all output gener-
ated by the libraries is structured to be easy to handle by a
program.

An interesting feature of Subversion is its supports for
the WebDAV protocol. WebDAV, often referred to simply
as DAV (Distributed Authoring and Versioning), is, in a
nutshell, a set of extensions to the http protocol to enable
distributed web authoring tools. WebDAV is supported via
an extension module for the popular Apache httpd server.

Because of its design and high quality documentation,
and despite its relative immaturity Subversion was se-
lected as the foundation for our lattice repository infras-
tructure.

THE LATTICE REPOSITORY
ARCHITECTURE

As previously mentioned, our most important objective
was to allow users to upload and retrieve lattice information
with a minimum of fuss and without an expectation of spe-
cialized knowledge on their part. To hide the complexity of
Subversion, our approach was as follows:

The Subversion libraries, repository, and a web server
(Apache) are all hosted on a common server. Interactions
with the repository are done through custom high level
scripts(mostly written in Perl at this point) which in turn
call the Subversion libraries. The architecture is illus-
trated schematically in figure 1.

In a typical software development context, each user
maintains a local copy of the file repository. Using a dedi-
cated client program, local file copies are periodically com-
mitted and/or synchronized with those held in a master
repository. For our lattice repository application, all oper-
ations are performed on behalf of actual users by a unique
proxy user. The proxy user owns,and as needed creates
and destroys temporary working copies of the repository
on which the Subversion libraries operate. The obvious
question is: what happens when more than one user attempt
to perform operations simultaneously? Correctly dealing
with this issue is actually at the heart of the surprising com-
plexity of revision control systems.
Subversion addresses the issue in an elegant man-

ner: repositories are created and modified by BerkeleyDB,
an embedded, high performance transactional datastore.
Berkeley datastore transactions are what in computer sci-
ence parlance are referred to as Atomic, Consistent, Iso-
lated, and Durable (ACID) transactions.

• Atomic: either all of the changes occur or none of
them do. If for any reason a transaction cannot be
completed, everything this transaction changed can be
restored to the state it was in prior to the start of the
transaction via a rollback operation.

• Consistent: Transactions always operate on a consis-
tent view of the data and when they end always leave
the data in a consistent state. Data may be said to be
consistent as long as it conforms to a set of invariants.

• Isolated: a given transaction appears to be running all
by itself on the database. The effects of concurrently
running transactions are invisible to this transaction,
and the effects of this transaction are invisible to oth-
ers until the transaction is committed.

• Durable: Once a transaction is committed, its effects
are guaranteed to persist even in the event of subse-
quent system failures. Until the transaction commits,
changes are guaranteed not to persist in the face of
a system failure, as crash recovery will rollback their
effects.

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

1067 0-7803-8859-3/05/$20.00 c©2005 IEEE

While reliance on the Berkeley transactional datastore pro-
vides significant advantages, there are also some disadvan-
tages. To operate reliably, embedded databases need to be
very strict about correct file access privileges. Because the
data are stored in binary format, special software is needed
to restore the integrity of the database. In theory, this in-
tegrity should be preserved by construction. However, in
real life all software has bugs, and hardware failures also
may lead to unpredictable behavior.

Another important issue we had to face was the fact
that in the Subversion paradigm, the concept of “ver-
sion” refers to entire repositories and not to individual files.
This view of the world is advantageous in the context of
large software projects where there is significant coupling
between all files needed to build a single executable. To
circumvent this apparently serious limitation, Subversion
supports “properties” which are basically user-defined file
level attributes. While it should be clear that overuse of
properties can degrade performance, they are used in the
lattice repository to store file level version information as
well as authorship and origin.

Authentication

At Fermilab, lattice information is the responsibility of
machine departments. Each Department Head (or a dele-
gate) has the responsibility of verifying and certifying files.
To guarantee the origin of official files, user authentica-
tion is required. The Laboratory uses Kerberos as a cen-
tralized authentication mechanism and it was decided that
we should take maximum advantage of the existing infras-
tructure. Unfortunately, we discovered that Kerberos-based
web authentication while possible was, surprisingly, not
very well supported. One major cause of this state of af-
fair is that the UNIX and Windows notions of Kerberos are
subtly different. Furthermore, Kerberos support in com-
mercial browsers such as Internet Explorer remains poorly
documented. While we have not completely abandoned the
idea of pure Kerberos authentication, we opted for the next
best thing: web (X.509) certificates. Using the KX.509
program (originally from the University of Michigan) any
user with an existing Kerberos ticket can acquire a X.509
certificate. This certificate can in turn be transmitted by
most web browsers to a web server and used to authorize
restricted operations.

CONCLUSIONS

Work on the Lattice Repository started in early Febru-
ary 2004; it became operational in August 2004. A sample
user interface screenshot is presented in figure 2. Files have
been collected for all Fermilab machines and transfer lines.
From a technical standpoint, we consider our experience a
success. The fact that the necessary infrastructure could be
put together in a relatively limited period of time is a testi-
mony to the quality of the free software tools developed by
the internet community.

Figure 1: The Lattice Repository Architecture.

Figure 2: Screenshot: Comparing two lattice file revisions.

REFERENCES

[1] B. Collins-Sussman, B.W. Fitzpatrick and C.M. Pilato, “Ver-
sion Control with Subversion” O’Reilly Media, June 2004,
http://svnbook.red-bean.com

[2] BerkeleyDB is a product of SleepyCat Software Inc.
http://www.sleepycat.com/docs/index.html

[3] L. Michelotti, J.-F. Ostiguy, “CHEF: An Interactive Program
for Accelerator Optics”, PAC2005 (this conference).

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

0-7803-8859-3/05/$20.00 c©2005 IEEE 1068

