
CHEF: AN INTERACTIVE PROGRAM FOR ACCELERATOR OPTICS∗

Leo Michelotti and Jean-Franc¸ois Ostiguy
Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

Abstract

We report the current status and our plans for the com-
pletion of CHEF, an interactive application for performing
optics calculations in accelerator physics. CHEF uses high
level graphical user interfaces to facilitate the exploitation
of lower level tools incorporated into a hierarchy of C++
class libraries, making them usable by those not familiar
with C++ programming.

INTRODUCTION

In January, 2004, Fermilab’s Accelerator Divison for-
malized two distinct, but related objectives as a project:
(1) develop a framework to access easily information
needed for accelerator physics calculations on Fermilab
machines, and (2) develop user-friendly software for optics
calculations in beam line design and analysis. A compo-
nent of the first is the Accelerator Division’s Lattice Repos-
itory, about which a separate paper has been submitted to
this conference. [1] The second is being implemented as a
GUI-based application called “CHEF,” an acronym which
stands for:

Collaborative: objects cooperate and share information;
Hierarchical: built on a hierarchy of (mostly pre-existing)
C++ class libraries;
Expansible: software is designed for future extensions;
Framework: a set of cooperating object classes that make
up a reusable design for a given type of application.

As a framework, CHEF is a collection of largely au-
tonomous components which can cooperate to perform
their functions; as a program, CHEF is the name of a GUI-
based application that provides an interface for doing op-
tics calculations using these components. The framework
provides a hierarchy of libraries to facilitate writing C++
programs; the application presents a user-friendly interface
for exploiting the tools in that hierarchy.

In the following sections we shall briefly (a) summa-
rize the underlying software that supports the application,
CHEF, (b) describe its current status, and (c) outline our
goals for CHEF’s first “production” version.

∗This manuscript has been authored by Universities Research Asso-
ciation, Inc. under contract No. DE-AC02-76CH03000 with the U.S.
Department of Energy. The United States Government retains and the
publisher, by accepting the article for publication, acknowledges that the
United States Government retains a nonexclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government pur-
poses.

LIBRARY HIERARCHY

CHEF is supported upon a collection of C++ class li-
braries that are ordered in a hierarchy of layers. Objects
within a layer “know about” each other’s existence and that
of the objects in lower layers but not higher ones. Presented
in order, from highest to lowest, these are called:
widget toolkit: A collection of autonomous widgets
which, although used by the application, CHEF, are funda-
mentally independent of it and could be instantiated within
other C++ programs. This layer contains GUIs that CHEF
presents to its users.
physics toolkit: Helper classes which perform specific
computational tasks, such as finding closed orbits or cal-
culating lattice functions. They also relieve a programmer
of various administrative responsibilities which tend to be
forgotten (e.g. turning off accelerating cavities before at-
tempting to find a closed orbit).
bmlfactory: Contains one C++ class which instantiates
to a factory object. The factory uses a LEX-YACC based
parser to interpret a restricted MAD v.8 syntax. Upon re-
quest, it will build beamline objects corresponding to those
described in MAD input files.
beamline: Classes for modeling beamlines and rings as se-
quential arrangements of neighboring elements. Whatever
specifies the elements’ physics and spatial configurations is
encapsulated within this layer, which has undergone con-
tinual evolutionary development since its original version
appeared in 1988.
integrator: Contains classes that perform basic numeri-
cal integration, including symplectic solvers for Hamilto-
nian dynamical systems. Combined with mxyzptlk (be-
low), these provide a convenient way of generating maps
for arbitrarily specified magnetic field configurations.
mxyzptlk: Classes for doing automatic differentiation and
differential algebra: esp. Jet, Mapping, and LieOperator.
The operators and functions it provides enable C++ pro-
grammers to use source code polymorphically, to calculate
numerical answers - e.g. via tracking, numerical integra-
tion, or iterative convergence - and to construct maps for
analysis, perturbation theory, and tracking. Since its origi-
nal release in 1989, mxyzptlk has undergone evolutionary
development. It’s current version takes advantage of tem-
plates and other modern C++ concepts. In earlier versions,
more attention was paid to accuracy than efficiency. Recent
algorithmic and memory management improvements have
made its performance comparable to that of software writ-
ten in Fortran.
basic toolkit: Its first version was written in 1988, when
C++ was new and changing rapidly. It comprises basic
algebraic and utility classes that at that time were neither

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

0-7803-8859-3/05/$20.00 c©2005 IEEE 988

standardized nor widely available, e.g. lists, vectors, matri-
ces, and header files containing physical and mathematical
constants. By now, many of its original classes have been
superseded by developments in the language, such as the
STL or third party libraries like Boost. This layer’s more
deprecated classes are being phased out, as gracefully as
possible.

Within this short report we can but comment briefly
upon this hierarchy’s more significant features.

Independence of physics from layout: A beamline ele-
ment comprises (a) an affine transformation, representing
the connection between its upstream and downstream ref-
erence frames and (b) a functor encapsulating the physics
(i.e. dynamics) that propagates a particle between them.
In principle, any element could be bounded by arbitrary
frames, but in practice the connection used by most el-
ements is trivially a displacement in thez (longitudinal)
direction. The principal exceptions occur in classes like
rbend, sbend, their combined-function variants, and Slot -
which, like drift, models empty space but possesses arbi-
trarily positioned and oriented bounding frames.

There is no global coordinate system and noa priori
“reference orbit,” but there is a “registration” process by
which a programmer can specify any particle to be “the ref-
erence particle.” Classes Frame and Slot enable easy, com-
pletely general placement of beamline elements by pro-
viding a mechanism for describing how neighboring ele-
ments are arranged with respect to each other. Physics is
expressed by electromagnetic fields written in coordinates
local to the element’s body. If more physics functors than
one are available, they can be “plugged into” beamline el-
ements at runtime. (E.g. not all elements of a particular
species need behave exactly the same way.)

This paradigm is not the one familiar to MAD users,
in which physics is specified relative to an assumed refer-
ence orbit from the beginning and all machine parameters
are pre-scaled relative to a magnetic rigidity (i.e. momen-
tum). These fundamental differences sometimes produce
tensions when CHEF tries to interpret a MAD input file or
when, an unusual geometric arrangement having been con-
structed, one tries to fit it into MAD’s assumptions.

Context: Cooperation - CHEF’s “C” - is facilitated by an
agent, called BeamlineContext, which keeps track of cal-
culations (i) that have been performed, (ii) that are needed
as preliminaries for other calculations, and (iii) that have
become invalid because of modifications to the beamline
model. It acts as a dispatcher, or overseer, positioned be-
tween CHEF’s widgets and the worker classes below.

Internal state response. Beamline elements like Lambert-
sons, pingers, and cavities can have time-dependent behav-
ior or respond to the passage of a particle (or bunch of par-
ticles). This capability could be exploited for modeling
wakefields, feedback, extraction, or the transfer of beam
between rings.

Figure 1: CHEF’s browser and text windows.

Persistence. Beamline models can be streamed to a file, re-
taining their “existence” after a program terminates. Stored
in this way, they later can be streamed back into other pro-
grams.

Algebraic polymorphism. Employing mxyzptlk’s alge-
braic operators and analytic functions, lines of propagator
or integration code can be used interchangeably for track-
ing and creating maps.

Run-time editing. Because the model is a C++ object, it
can be modified at runtime. The possibilities go far beyond
merely modifying attributes: e.g. elements can be split,
combined, subbeamlines can be replaced with equivalent
maps, beambeam and spacecharge lenses can be inserted.

CHEF, THE APPLICATION

While the lower level libraries can be (and are) used
within C++ programs, CHEF, the application, provides
graphical user interfaces to invoke a collection of standard
operations. Described here are its major widgets and menu
items.

Browser. A beamline browser provides a hierarchical view
of instantiated accelerator models similar to that of familiar
file browsers, like Windows Explorer. Instead of folders,
subfolders, and files, one sees beamlines, sub-beamlines,
and elements. (See Figure 1.) Right-clicking on an element
reveals most of its parametric attributes, some of which can
then be modified interactively.

If the beamline is instantiated from a MAD input file, the
file itself can optionally be viewed and edited in a text win-
dow before and after instantiation. All beamlines defined
in a file are simultaneously viewable; a user simply selects
the ones to be displayed. The hierarchy shown will reflect
a beamline’s structure as defined within the file.
Edit menu: As mentioned already, some properties of an
element can be modified within the Browser. Actions that
create new lines from old ones - via operations that dupli-
cate, condense, flatten, merge equivalent elements, convert
drifts to slots, or simply rename - can be invoked from this
menu.

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

989 0-7803-8859-3/05/$20.00 c©2005 IEEE

Figure 2: A plotting window, showing lattice functions.

Plotters: Currently used primarily for plotting lattice func-
tions, dispersion, and closed orbits, in principle any data
- theoretical or experimental - can be displayed and su-
perposed within these widgets. Horizontal and vertical
scrolling is enabled after zooming; plotted data can be
saved as tables of numbers for use in other programs.
Phase space views: Multiple views of phase space are
available to monitor the behavior of a virtual particle
traversing a ring. These widgets use OpenGL to provide
both two- and three-dimensional projections that update
automatically as the simulation is running. An ”action-
angle” view is particularly good for exposing KAM tori. [2]
bpm tracer: A circulating particle can also be followed
within a window that receives and displays signals from
monitors embedded into the accelerator model. The plot
has a fading memory of user-specified length, enabling a
user to watch an envelope evolve. Also based on OpenGL,
it could (in the future) be made three-dimensional, esp. for
display with apertures.
Geometry viewer: This “SiteViewer” object provides a
global look at a model’s geometric layout, essentially in-
tegrating the connections between the beamline elements’
local frames. Zooming in on and and moving the image are
performed with the mouse. Right-clicking on an element
provides information about it. Currently two-dimensional,
the widget nonetheless is based on OpenGL so that it can
be extended to three dimensions in the future.
Selector: Constructs propositions regarding elements’ at-
tributes which are then applied to select subsets of ele-
ments. When invoked from the Browser, the subbeamlines
open to expose and highlight the selected elements. In-
voked within the SiteViewer, selected elements are high-
lighted.
Python interpreter: One window provides an interface
for a Python interpreter which utilizes Python bindings
that have been created for all lower level C++ classes and
for CHEF’s components. Within it, a user can extend
CHEF without leaving the application by writing and test-
ing python scripts that can be executed, saved, and later
recalled.
Device monitor: Using an XMLRPC protocol and proce-

dures provided by Fermilab’s Controls Group, this window
monitors “devices,” a category that encompasses any da-
tum provided about a Fermilab machine. The display can
be toggled to update itself automatically or only upon re-
quest.
Messages: A message window captures error and warning
messages that are streamed during a calculation, either an-
nouncing that it has gone wrong or providing information
about its progress.

GOALS

In October, 2004, an initial release of CHEF was in-
stalled on a UNIX machine. CHEF and its components
were themselves almost completely free of dependencies
on the operating system, and by January, a Windows XP
version was made available. For those who want to explore
its possibilities, despite its currently incomplete state and
lack of documentation, a Windows version can be down-
loaded from http://www-ap.fnal.gov/CHEF. An RPM file
for Fermi Linux will be provided in the future, and the
source code will be included when the product reaches a
reasonably stable finished state. Apart from ongoing im-
provement of lower level libraries, our work on CHEF be-
tween now and then will focus on the following priorities.

non-periodic lines: Most of CHEF’s current functionality
targets storage rings and synchrotrons. Our highest priority
is to add features more appropriate for transfer lines and
linacs.
unrestricted geometric manipulations: The lower level
libraries already contain the tools necessary for arbitrary,
even exotic, placement of elements. Our goal now is to lift
that capability into the CHEF layer.
operate on selected objects: Having selected a group of
elements, a user will be able to edit their properties, if of
the same type, or to group them into “circuits,” enabling
control by specifying values of “knob” parameters.
importing measured properties: To morph a “design”
model into a “realistic” one, CHEF will provide a mecha-
nism for importing data from existing databases, including
the descriptions contained in the Lattice Repository. [1]
nonlinear analysis: We will add menu entries for doing
simple nonlinear analysis on rings, such as calculation of
resonance widths, tune spread, and focal properties.

Most of these involve functionalities are already present in
the lower level libraries. The task will be to make them
available from CHEF’s graphical user interfaces.

REFERENCES

[1] Jean-Francois Ostiguy,et al., “The Fermilab Lattice Informa-
tion Repository.” This conference.

[2] This particular tool is a direct descendant of AESOP, which
was described in “Exploratory Orbit Analysis,”Proceedings
of the 1989 IEEE Particle Accelerator Conference. IEEE Cat-
alog Number 89CH2669-0.

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

0-7803-8859-3/05/$20.00 c©2005 IEEE 990

