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Abstract

In a linear collider, sources of beam jitter due to
kicker noise, quadrupole vibration and long-range trans-
verse wakefields will lead to beam offsets and tilts at the
Intersection Point (IP). In addition, sources of emittance
dilution such as short-range transverse wakefields or dis-
persive errors will lead to internal beam distortions. When
the IP disruption parameter is large, these beam imperfec-
tions will be amplified by a single bunch kink instability
which will lead to luminosity loss. In this paper, we study
the luminosity loss and then the optimization required to
partially cancel the luminosity loss both analytically and
with direct simulation.

Introduction

To achieve the desired luminosity in a future linear col-
lider, the beams are focused to small spot sizes and the re-
sulting beam-beam forces can be very large. With oppo-
sitely charged beams, the beam-beam forces will lead to a
mutual focusing or pinch which further increases the beam
densities and the luminosity and is referred to as the lu-
minosity enhancement. In addition, if the beams are off-
set from each other, the attractive beam-beam force can
bring the beams closer together possibly recovering some
of the lost luminosity. Unfortunately, if the beam-beam
force is too large, this attraction can lead to an instabil-
ity much like a plasma two-stream instability which is re-
ferred to as a single bunch kink instability [1, 2], which can
be parameterized with the disruption parameter: Dx(,y) ≡
σz/[fx(,y)] = 2Nbreσz/[γσx(,y)(σx + σy)], where fx(,y)

is the focal length due to the beam-beam force; σx(,y,z) is
the rms beam size, Nb the number of particle per beam, re

the electron classical radius, and γ the Lorentz factor. We
will follow closely to the approach in Ref. [2]

Equations of Motion

Suppose that two beams move towards each other with
velocity v, the equations of motion read [1]

(
∂

∂t
± v

∂

∂s

)2

yl(,r) = −
2λrec

2
[
yl(,r) − yr(,l)

]
σy(σx + σy)γ

, (1)

where, yl(,r) is the centroid displacements of the electron
(positron) beam from the reference axis and λ is the line
density. The readers may refer to Ref. [2] for details.
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Initial Value Problem

The internal coordinate z is introduced to label the slice
at a distance z from the head of the beam, and 0 < z < l,
where l is the beam length. We define t = 0 when the
heads of the two beams collide. We also define s = 0 as
the IP where the two beams first collide. The positive s
direction is to the right. Hence in the left-coming beam,
the slice z will be located at s = vt− z at time t when the
beam head is at the location s = vt. In the right-coming
beam, we also introduce z to describe the distance between
a certain slice and the head of the beam, and again 0 <
z < l. Hence, when the head of the right-coming beam is
at location s = −vt at time t, the slice z is at location s =
−vt+z. We now use (s, z) as the independent variable pair,
and we define k2

0 ≡ 2λre/ [σy(σx + σy)γ]. The coordinate
system is shown in Fig. 1. Now let us study two cases. For
the first case, the right-coming beam has an initial offset
yr0, and the left-coming beam is undistorted and on-axis.
The second case, the right-coming beam is crabbed, and
the left-coming beam is perfect. The initial conditions are
then

yl(0, z) = 0 and
∂yl(s, z)

∂s

∣∣∣∣
s=0

= 0 , (2)

for the left-coming electron beam. In the first case,

yr(0, z) = yr0 and
∂yr(s, z)

∂s

∣∣∣∣
s=0

= 0 , (3)

for the right-coming positron beam. In the second case,

yr(0, z) = θr0z and
∂yr(s, z)

∂s

∣∣∣∣
s=0

= 0 . (4)

The equations of motion together with the initial condi-
tions yield the following integral representation of the so-
lution

yl(s, z) = yl(z/2, z) cos [k0(s− z/2)]

+
∂yl(s, z)

∂s

∣∣∣∣
s=z/2

sin [k0(s− z/2)]
k0

(5)

+ k0

∫ s

z/2

ds′yr(−s′, 2s′ − z) sin[k0(s− s′)] .

Similarly, for the right-coming beam, we have

yr(s, z) = yr(−z/2, z) cos [k0(s + z/2)]

+
∂yr(s, z)

∂s

∣∣∣∣
s=−z/2

sin [k0(s + z/2)]
k0

(6)

+ k0

∫ s

−z/2

ds′yl(−s′,−2s′ − z) sin[k0(s− s′)].
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Series Solution

Let us solve the above set of Eqs. (5) and (6) via a se-
ries solution approach [2, 3, 4]. We expand yr(,l)(s, z) in a
series of powers in k0

yr(,l)(s, z) =
∞∑

n=0

y
(n)
r(,l)(s, z) , (7)

and obtain the nth-order term from the (n−1)th-order term.
According to Eq. (5), for n = 1, 2, 3, · · ·, yl(s, z) would be

y
(n)
l (s, z)=k0

∫ s

z/2

ds′y(n−1)
r (−s′, 2s′−z) sin[k0(s−s′)]; (8)

and similarly, according to Eq. (6), for yr(s, z), we have

y(n)
r (s, z)=k0

∫ s

−z/2

ds′y
(n−1)
l (−s′,−2s′−z) sin[k0(s−s′)]. (9)

According to Eqs. (5) and (6) with the initial conditions in
Eqs. (2), (3), and (4), we can get series solution as Ref. [2].
Here, we only give explicit asymptotic solution.

Offset For the first case, i.e., the right coming beam
has an initial offset, we have

yr(s, z) ≈ − iyr0

2

√
|2s + z|

z
J1

(
ik0

√
z|2s + z|/2

)
× sin[k0(s + z)] (10)

≈ yr0

2

√
|2s + z|

z

(
πk0

√
z|2s + z|

)−1/2

× exp
{

k0

√
z|2s + z|/2

}
sin[k0(s + z)],

for −z/2 > s > −(l + z)/2; and

yl(s, z) ≈ −yr0

2
J0

(
ik0

√
z(2s− z)/2

)
cos[k0(s− z)]

≈ −yr0

2

(
πk0

√
z(2s− z)

)−1/2

× exp
{

k0

√
z(2s− z)/2

}
cos[k0(s− z)],(11)

for (l + z)/2 > s > z/2.

Crabbed beam For the second case, i.e., the right
coming beam is crabbed, we have

yr(s, z) ≈ iθr0

k0

√
|2s + z|

z
J1

(
ik0

√
z|2s + z|/2

)

× cos[k0(s + z)] (12)

≈ −θr0

k0

√
|2s + z|

z

(
πk0

√
z|2s + z|

)−1/2

× exp
{

k0

√
z|2s + z|/2

}
cos[k0(s + z)],

for −z/2 > s > −(l + z)/2; and

yl(s, z) ≈ −θr0

k0
J0

(
ik0

√
z(2s− z)/2

)
sin[k0(s− z)]

≈ −θr0

k0

(
πk0

√
z(2s− z)

)−1/2

× exp
{

k0

√
z(2s− z)/2

}
sin[k0(s− z)],(13)
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Figure 1: Schematic of the initial condition of the two
beams and also the definition of the notations: s, zr(,l), l,
and yr0. In Fig. 1, θr0 < 0.

for (l + z)/2 > s > z/2.

Luminosity

The luminosity is defined as [5]

L = 2N2
b v

∫
dxdydsdt nl(x, y, zl, t)nr(x, y, zr, t), (14)

where zl = vt − s and zr = vt + s and we assume
the same number population Nb in each beam and head-
on collisions. The distribution function is normalized to
unit, i.e.,

∫
dxdyds nl(,r)(x, y, zl(,r), t) = 1. Assum-

ing Gaussian transversely and uniform longitudinally, and
ignoring the luminosity enhancement due to beam-beam
pinch, the ‘geometric’ luminosity is L00 = N2

b / [4πσxσy].
Finally, the nominal luminosity L0, including the effect of
the luminosity enhancement, is found by multiplying by
the enhancement factor HD which is typically between 1
and 2 for flat beam collisions, i.e., L0 = L00HD. Now,
we study the luminosity loss due to the beam-beam disrup-
tion. Given the solutions in Eqs. (10) − (13), we compute
the luminosity. On the other hand, we also simulate the lu-
minosity loss via GuineaPig [6] for longitudinal Gaussian
distribution.

Table 1: Summary of the parameters for the US Cold [7].
E (GeV) Nb (1010) σx (µm)

250 2.0 0.543
σx′ (µrad) σy (nm) σy′ (µrad)

36 5.7 14
σz (m m) σδ (%) Dy

0.3 0.1 22.0

Luminosity loss

Now let us illustrate how the beam-beam disruption
leads to a large luminosity loss. We study the ILC US Cold
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Figure 2: Luminosity loss as a function of offset yr0 for
various Dy = 1 (black solid), 5 (green long-dashed), 10
(red dashed), and 50 (blue dash-dotted).

Figure 3: Luminosity loss as a function of Dy for various
yr0/σy = 1/3 (back solid), 2/3 (green long-dashed), 1 (red
dashed), and 4/3 (blue dash-dotted).

[7] with the parameters in Table 1. In Figs. 2, 3, 4, and 5,
we luminosity loss as a function of various parameters. All
these plots show that when Dy is large, say Dy > 10, the
beam-beam disruption tends to exponentially amplify ini-
tial offset as well for initial crabbing angle. This is similar
to the modulation studied in Ref. [2].

Luminosity optimization

We now study possible optimization via partial cancella-
tion among various imperfection. As an example, imaging
that the two beams come in with an offset yr0; naively, we

Figure 4: Luminosity loss as a function of θr0 for various
Dy = 1 (black solid), Dy = 5 (green long-dashed), Dy =
10 (red dashed), and Dy = 50 (blue dash-dotted).

Figure 5: Luminosity loss as a function of Dy for vari-
ous θr0 = 1 (black solid), 5 (green long-dashed), 10 (red
dashed), and 50 (blue dash-dotted) µrad.

Figure 6: Luminosity loss as a function of initial crabbing
angle θr0 for various offset yr0 = 1/3 (black), 1 (green), 2
(red), and 5 (blue). Curves for analytical result and symbol
for GuineaPig simulation.

would crab the right-coming beam with a negative angle, so
that the beam-beam attraction will bend the beam opposite
to its original angle. The configuration is shown in Fig. 1.
Now, in Fig. 6, the right-coming beam has an initial offset
of yr0/σy = 1/3 (black), 1 (green), 2 (red), and 5 (blue).
We vary the initial angle θr0. It is clearly shown that the
optimization for each case comes at a negative θr0.

Discussion

Due to the strong beam-beam disruption, initial imper-
fectness is exponentially amplified, which leads to substan-
tial luminosity loss for Dy > 10. In reality, beams have off-
set, crossing angle, and also modulation [2], then a detailed
optimization is necessary, besides feedback approach.
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