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Abstract 

The two-beams electron - ion system consists of a 
nonrelativistic ion beam propagating co-axially with a 
high-current relativistic electron beam in a longitudinal 
inhomogeneous magnetic field. The effect of the 
longitudinal inhomogeneous magnetic field on instability 
Budker-Chirikov (BCI) in the system is investigated by 
the method of a numerical simulation in terms of the 
kinetic description of both beams. The investigations are 
development of investigations in [1,2,3].  

Is shown, when the inhomogeneity magnetic field 
results in the decreasing of an increment of instability 
Budker-Chirikov and the increasing of length of 
propagation of a electron beam. Also is shown, when take 
place the opposite result. 

BASIC EQUATIONS  
We investigate a two-beam electron—ion system 

consisting of a nonrelativistic ion beam propagating co-
axially with a high-current relativistic electron beam. The 
both beams are injected in equilibrium into drift tube. The 
kinetic description- of both beams is provided by means 
of solutions of the Vlasov equations for the electron and 
ion distributions functions, fe,i (t, z, r, pz, pr, pθ ):  
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The equations for the scalar potential and the three 
component of the vector potential are used for finding the 
electromagnetic fields. The equations are solved in the 
long-wave (∂2 /∂z2 << ∆⊥ ), low-frequency (∂2 /∂t2 << c2 
∆⊥), axial-symmetric (∂ /∂θ ≡ 0) case. where ∆⊥  is the 
transverse part of the Laplace operator. Boundary 
conditions for the potentials fellow from the system's 
axial symmetry, the presence of conducting tube with 
radius R and the gauge condition div A = 0. The Vlasov 
equations are solved by the macroparticle method. It is 
assumed that the steady-slate process is periodic in time 
set with a frequency ω. In this case it is convenient to use 
the longitudinal coordinate z as the independent variable, 

using the relation d/dt = (l/ vz ) d/dz, where vz , is the 
velocity of a given macroparticle. The problem is then 
reduced to the evolution of a periodic-in-time system on 
z. 

The periodic in time (with frequency w) potential 
function is of the form 
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which is substituted into the equations for the potential 
components and integrated over a time period. The 
equations for the four components of the 4-poternial Ai ,  
( ∆ri Ai =4πρi , i= 1, 2, 3, 4  ∆ri is the radial parts of the 
D’Alambertian, and ρi are the components of the 4-
density) are solved at every z--cross-section by the grid 
method. 

We obtain the equations for the macroparticles: 
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where we have written Ke =1, Ki = -meZi/mi ,and Zi is the 
ion charge state, α = e, i. 
When the electric field equation: 
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and the magnetic field equation: 
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The scalar potential equations as equation (2): 
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with conditions 
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When B0 is the internal magnetic field, ρ=r/R, ξ=z/R, R – 
radius drift tube. 

BCI INSTABILITY  
The most important of the instabilities in the two-beam 

electron—ion system is the Budker- Chirikov instability 
(BCI) [4,5]. It is connected with the resonance of the 
slow-cyclotron wave of electron beam and fast betatron 
wave of the ion beam. Unlike [1], the spread of 
longitudinal velocities of an electron beam are took place. 

The Budker-Chirikov instability take place in that case. 
The instability in the time periodic regime is displayed in 
the growth of the radial modulation amplitude of both 
beams along the longitudinal coordinate. Also the BCI is 
developed in exponential growth of the potential 
amplitude.  

The dependence of the BCI increment from the increase 
the inhomogeneity magnetic field has appeared multiple-
valued. With some parameters of the two-beams electron - 
ion system the BCI increment decreases with the increase 
the inhomogeneity magnetic field. In that case also take 
place the increasing of length of propagation of a electron 
beam. But with other parameters of the two-beams 
electron - ion system take place the opposite result. 
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