WPAP  —  Sources and Injectors   (18-May-05   08:30—12:20)

Paper Title Page
WPAP001 HELIOS, the Linac Injector of SOLEIL: Installation and First Results 755
 
  • B. Pottin, R. Chaput, J.-P. Pollina, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette
  • D. Jousse, J.-L. Pastre, A.S. Setty
    THALES, Colombes
 
  Funding: SOLEIL

HELIOS is the Hundred MeV Electron Linac Injector Of SOLEIL the new French SR facility. The Linac is constructed by THALES as a “turn key” equipment on the basis of SOLEIL’s APD design. The Linac injector is composed of a triode gun (90 kV, 500 mA), a prebuncher (10 kV, 200 W), a buncher (SW, 15 MeV, 5 MW) focalised by a solenoid and two accelerating sections (TW, 2pi/3, 45 MeV, 12 MW) feeded by 2 klystrons (35 MW). The major Linac components have been previously tested at THALES factory and the installation on the site has begun from October 2004. After a brief description of the building construction, the tests of the Linac components and operating modes will be detailed. The commissioning with beam is planned on March; the results on beam qualities will be presented: energy spread, emittance, and beam dynamics along the Linac.

 
WPAP003 Emission Mechanisms in a Photocathode RF Gun 856
 
  • J.H. Han, J.W. Baehr, H.-J. Grabosch, M. Krasilnikov, V. Miltchev, A. Oppelt, B. Petrosyan, S. Riemann, L. Staykov, F. Stephan
    DESY Zeuthen, Zeuthen
  • K. Floettmann, S. Schreiber
    DESY, Hamburg
  • M.V. Hartrott
    BESSY GmbH, Berlin
  • P. Michelato, L. Monaco, D. Sertore
    INFN/LASA, Segrate (MI)
  • J.R. Roensch
    Uni HH, Hamburg
 
  In photocathode rf guns, emission mechanisms at the photocathode play a crucial role in the overall beam dynamics. A low bunch charge as well as a short Gaussian bunch profile allow us to study the beam dynamics depending on emission phase without space charge force. This paper presents experimental and simulation studies toward detailed understanding of the photo emission and secondary emission processes at the cathode.  
WPAP004 Dark Current and Multipacting in the Photocathode RF Guns at PITZ 895
 
  • J.H. Han, J.W. Baehr, H.-J. Grabosch, M. Krasilnikov, V. Miltchev, A. Oppelt, B. Petrosyan, S. Riemann, L. Staykov, F. Stephan
    DESY Zeuthen, Zeuthen
  • K. Floettmann, S. Schreiber
    DESY, Hamburg
  • M.V. Hartrott
    BESSY GmbH, Berlin
  • P. Michelato, L. Monaco, D. Sertore
    INFN/LASA, Segrate (MI)
  • J.R. Roensch
    Uni HH, Hamburg
 
  For photocathode rf guns, the amount of dark current depends on the cavity surface and the photocathodes. Smooth conditioning reduces the amount of dark current. Mechanical damages of the cathodes induce high dark current and chemical pollution changes emission properties of the cathode. Multipacting in the gun cavity changes the surface status of the cathodes and sometimes makes the gun operation impossible due to vacuum interlocks. In this paper, dark current and multipacting features of the rf gun are presented including experimental and simulation studies.  
WPAP005 Beam-Based Procedures for RF Guns 967
 
  • M. Krasilnikov, J.W. Baehr, H.-J. Grabosch, J.H. Han, V. Miltchev, A. Oppelt, B. Petrosyan, L. Staykov, F. Stephan
    DESY Zeuthen, Zeuthen
  • M.V. Hartrott
    BESSY GmbH, Berlin
 
  A wide range of rf photo injector parameters has to be optimized in order to achieve an electron source performance as required for linac based high gain FELs. Some of the machine parameters can not be precisely controlled by direct measurements, whereas the tolerance on them is extremely tight. Therefore, this should be met with beam-based techniques. Procedures for beam-based alignment (BBA) of the laser on the photo cathode as well as solenoid alignment have been developed. They were applied at the Photo Injector Test facility at DESY Zeuthen (PITZ) and at the photo injector of the VUV-FEL at DESY Hamburg. A field balance of the accelerating mode in the 1 ½ cell gun cavity is one of the key beam dynamics issues of the rf gun. Since no direct field measurement in the half and full cell of the cavity is available for the PITZ gun, a beam-based technique to determine the field balance has been proposed. A beam-based rf phase monitoring procedure has been developed as well.  
WPAP006 Recent Developments at PITZ 1012
 
  • M. Krasilnikov, K. Abrahamyan, G. Asova, J.W. Baehr, G. Dimitrov, U. Gensch, H.-J. Grabosch, J.H. Han, S. Khodyachykh, S. Liu, V. Miltchev, A. Oppelt, B. Petrosyan, S. Riemann, L. Staykov, F. Stephan
    DESY Zeuthen, Zeuthen
  • W. Ackermann, W.F.O. Müller, S. Schnepp, T. Weiland
    TEMF, Darmstadt
  • J.-P. Carneiro, K. Floettmann, S. Schreiber
    DESY, Hamburg
  • M.V. Hartrott, E. Jaeschke, D. Kraemer, D. Lipka, R. Richter
    BESSY GmbH, Berlin
  • P. Michelato, L. Monaco, C. Pagani, D. Sertore
    INFN/LASA, Segrate (MI)
  • J.R. Roensch, J. Rossbach
    Uni HH, Hamburg
  • W. Sandner, I. Will
    MBI, Berlin
  • I. Tsakov
    INRNE, Sofia
 
  The ability to produce high brightness electron beams as required for modern Free Electron Lasers (FELs) has been demonstrated during the first stage of the Photo Injector Test Facility at DESY Zeuthen (PITZ1). The electron source optimization at PITZ1 was successfully completed, resulting in the installation of the PITZ rf gun at the VUV-FEL (DESY, Hamburg). One of the main goals of the second stage of PITZ (PITZ2) is to apply higher gradients in the rf gun cavity in order to obtain smaller beam emittance by faster acceleration of the space charge dominated beams. In order to reach the required gradients a 10 MW klystron has to be installed and the gun cavity has to be conditioned for higher peak power. Another important goal of PITZ2 is a detailed study of the emittance conservation principle by using proper electron beam acceleration with a booster. Further photo injector optimization, including update of the photocathode laser and diagnostic tools, is foreseen as well. Recent progress on the PITZ developments will be reported.  
WPAP007 Status of the 3½ Cell Superconducting RF Gun Project in Rossendorf 1081
 
  • R. Xiang, H. Buettig, P. Evtushenko, D. Janssen, U. Lehnert, P. Michel, K. Moeller, Ch. Schneider, R. Schurig, F. Staufenbiel, J. Teichert
    FZR, Dresden
  • T.  Kamps, D. Lipka
    BESSY GmbH, Berlin
  • W.-D. Lehmann
    IfE, Dresden
  • J. Stephan
    IKST, Drsden
  • V. Volkov
    BINP SB RAS, Novosibirsk
  • I. Will
    MBI, Berlin
 
  In the paper, we report on the status and progress of the superconducting rf gun project in Rossendorf. The gun is designed for cw operation mode with 1mA current and 10 MeV electron energy. The gun will be installed at the ELBE superconducting electron linear accelerator. It will have a 3½ cell niobium cavity operating at 1.3 GHz. The cavity consists of three cells with TESLA geometry and a specially designed half-cell in which the photocathode will be placed. Two Nb cavities, with RRR 300 and 40 respectively, will be finished at the beginning of 2005. After delivery, the rf tests will be performed and the treatment of the cavities will be started. At the same time, the design of the cryostat is finished and the fabrication of its components is under way. Further activities are the design of the diagnostic beam line, the assembling of the new photocathode preparation system, and the upgrade of the 262 nm driver laser system.  
WPAP008 Simulation for a New Polarized Electron Injector (SPIN) for the S-DALINAC 1117
 
  • B. Steiner, W.F.O. Müller, T. Weiland
    TEMF, Darmstadt
  • J. Enders, H.-D. Gräf, A. Richter, M. Roth
    TU Darmstadt, Darmstadt
 
  Funding: Work supported in part by DFG under contract SFB 634 and DESY, Hamburg.

The Superconducting DArmstädter LINear ACcelerator (S-DALINAC) is a 130 MeV recirculating electron accelerator serving several nuclear and radiation physics experiments. For future tasks, the 250 keV thermal electron source should be completed by a 100 keV polarized electron source. Therefore a new low energy injection concept for the S-DALINAC has to be designed. The main components of the injector are a polarized electron source, an alpha magnet, a Wien filter spin-rotator and a Mott polarimeter. In this paper we report over the first simulation and design results. For our simulations we used the TS2 and TS3 modules of the CST MAFIA (TM) programme which are PIC codes for two and three dimensions and the CST PARTICLE STUDIO (TM).

 
WPAP009 Optimization of RF Compressor in the SPARX Injector 1144
 
  • C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma)
  • M. Boscolo, M. Ferrario, B. Spataro
    INFN/LNF, Frascati (Roma)
  • L. Serafini
    INFN-Milano, Milano
 
  The SPARX photoinjector consists in a rf gun injecting into three SLAC accelerating sections, the first one operating in the RF compressor configuration in order to achieve higher peak current. A systematic study based on PARMELA simulations has been done in order to optimize the parameters that influence the compression also in view of the application of this system as injector of the so called SPARXINO 3-5 nm FEL test facility. The results of computations show that peak currents at the injector exit up to kA level are achievable with a good control of the transverse and longitudinal emittance by means of a short SW section operating at 11424 MHz placed before the first accelerating section. Some working points in different compression regimes suitable for FEL experiments have been selected. The stability of these points and the sensitivity to various types of random errors are discussed.  
WPAP011 SPARC Working Point Optimization for a Bunch with Gaussian Temporal Profile 1248
 
  • M. Boscolo, M. Ferrario, V. Fusco, M.  Migliorati
    INFN/LNF, Frascati (Roma)
  • S. Reiche
    UCLA, Los Angeles, California
  • C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma)
 
  We present the optimization of the working point for the SPARC photoinjector with a Gaussian temporal profile. The implications of a Gaussian temporal profile are discussed here for the standard working conditions and for the RF compressor case in comparison with the nominal working point performances of a 10ps flat top pulse with rise time of 1ps. Comparisons with the upgraded version of the HOMDYN code including arbitrary bunch temporal profiles are also reported. Advantages and drawbacks of the Gaussian and flat top pulse shapes are discussed. For the standard working point, it is shown that the two cases provide the same saturation length and average power, but the higher current in the beam core of the Gaussian pulse gives a higher peak radiation power. As the laser pulse shape could be Gaussian at the first stage of the SPARC operation, it is clear the importance of these simulation results.  
WPAP012 Preliminary Results on Beam Dynamics of Laser Pulse Shaping Effects in SPARC 1315
 
  • M. Boscolo, M. Ferrario, M.  Migliorati
    INFN/LNF, Frascati (Roma)
  • F. Castelli, S. Cialdi, A.F. Flacco
    INFN-Milano, Milano
 
  In a photoinjector system the role played by the laser pulse shaping in achieving high quality electron beam is crucial, as it determines the distribution dependent space charge effects in the early stages of the acceleration. A dedicated code to simulate pulse shaping in a laser system and able to generate the corresponding initial electron beam distribution has been developed. Realistic deviations from the ideal flat top pulse give for example a ramp or multi-peaks shape with a raletive rise time, plateau deformation and ripples. The beam dynamics of electron beams with different initial temporal pulse characteristics along the SPARC photoinjector has also been studied with the code PARMELA. More exotic pulse shaping are also discussed. The study presented here gives some indications on the tolerances of the laser beam characteristics for the electron beam quality preservation.  
WPAP013 Magnesium Film Photocathodes for High Brilliance Electron Injectors 1350
 
  • F. Tazzioli, G. Gatti, C. Vicario
    INFN/LNF, Frascati (Roma)
  • I. Boscolo, S. Cialdi
    INFN-Milano, Milano
  • L. Cultrera, A. Perrone
    Lecce University, Lecce
  • S. Orlanducci, M.L. Terranova
    Università di Roma II Tor Vergata, Roma
  • M. Rossi
    Rome University La Sapienza, Roma
 
  Advanced high brilliance electron injectors require photocathodes having low thermal emittance, high quantum efficiency (QE) and prompt response. They should be easy to handle and capable of working in the very high electric fileds of a RF gun. Magnesium films deposited by laser ablation and sputtering techniques are discussed and QE measurements are presented.  
WPAP014 Development of Electron Gun of Carbon Nanotube Cathode 1392
 
  • Y. Hozumi
    GUAS/AS, Ibaraki
  • M. Ikeda, S. Ohsawa, T. Sugimura
    KEK, Ibaraki
 
  We are developing high brightness electron guns utilizing carbon nanotube (CNT) cathodes. Recently, we succeeded to achieved field emission currents to 0.2 A (3 A/cm2) from a triode type CNT cathode of 3 mm diameter. The emission tests were performed at DC100kV acceleration voltage in pulse operations of 50 Hz using 6 nsec pulses. The emission currents were very stable for long term periods of 3 weeks. Photo emission tests from CNT cathode by 266nm laser pulses is also due to be reported simultaneously.  
WPAP016 High Brightness Electron Gun for X-Ray Source 1488
 
  • S. Ohsawa, M. Ikeda, T. Sugimura, M. Tawada
    KEK, Ibaraki
  • Y. Hozumi
    GUAS/AS, Ibaraki
  • K. Kanno
    AET Japan, Inc., Kawasaki-City
 
  A new electron-gun system is under development in order to increase X-ray from a rotating target. In commercial X-ray sources electron beams usually hit targets at the outer part. Owing to deformation by centrifugal force, there has been a limit on electron beam intensities. In order to overcome this difficulty, we adopted a new injection system which strikes inside of a ring-shape projection on a rotating target. It has an advantage in that heated-up points have supports back side against centrifugal force. This merit allows us to raise electron beam to give stronger X-rays.  
WPAP017 Experimental Observation of a 100-Femtosecond Single Electron Bunch in Photocathode Linac with Longitudinal Emittance Compensation Technique 1546
 
  • J. Yang
    RCNP, Osaka
  • K. Kan, T. Kondoh, T. Kozawa, S. Tagawa, Y. Yoshida
    ISIR, Osaka
 
  The realization of a 100fs electron pulse is important for the studies of ultrafast physical/chemical phenoena with a pump-probe method. We have developed a photocathode linear accelerator (linac) to generate such electron pulse with a magnetic pulse compressor. The nonlinear effect of the magnetic fields in the pulse compression was compensated carefully by optimizing the magnetic fields and the booster linac RF phase. A 105fs(rms) electron bunch with electron charge of 0.1nC was observed experimentally by using a femtosecond streak camera. The beam energy was 35MeV, and the normalized teraservers emittance was lower than 3mm-mrad. The dependences of the pulse length and the emittance on the electron charge were also measured and compared with the theoretical calculations.  
WPAP018 Generation of Double-Decker Femtosecond Electron Beams in a Photoinjector 1604
 
  • J. Yang, K. Kan, T. Kondoh, T. Kozawa, Y. Kuroda, S. Tagawa, Y. Yoshida
    ISIR, Osaka
 
  The femtosecond electron beam is a practical source in the pump-probe experiment for studies of ultrafast physical/chemical reactions in materials, in which a mode-locked ultrashort laser light is used as a probe source. The synchronized time jitter between the electron beam and the laser light limits the time resolution in the experiment. In order to reduce the time jitter, a new concept of synchronized double-decker electron beam generation in a photoinjector was proposed. The double electron beams were observed in an S-band photocathode RF gun by injecting two laser beams which produced with a picosecond laser. The double electron beams were compressed into 400fs(rms) with a phase-space rotation technique in magnetic fields. The beams, which one is used as a pump source and another is used as a probe source, are expected for ultrafast reaction studies in femtosecond resolution.  
WPAP019 X-Band Thermionic Cathode RF Gun at UTNL 1646
 
  • A. Fukasawa, F. Ebina, T. Kaneyasu, H. Ogino, F. Sakamoto, M. Uesaka
    UTNL, Ibaraki
  • M. Akemoto, H. Hayano, T. Higo, J.U. Urakawa
    KEK, Ibaraki
  • K. Dobashi
    NIRS, Chiba-shi
  • K.M. Matsuo, H. Sakae
    IHI/Yokohama, Kanagawa
 
  The X-band (11.424 GHz) linac for compact Compton scattering hard X-ray source are under construction at Nuclear Engineering Research Laboratory, University of Tokyo. This linac designed to accelerate up to 35 MeV, and this electron beam will be used to produce hard X-ray by colliding with laser. It consists of a thermionic cathode RF gun, an alpha magnet, and a traveling wave tube. The gun has 3.5 cells (unloaded Q is 8250) and will be operated at pi-mode. A dispenser cathode is introduced. Since the energy spread of the beam from the gun is predicted to be broad due to the continuous emission from the thermionic cathode, a slit is placed in the alpha magnet to eliminate low energy electrons. The simulation on the injector shows the beam energy 2.9 MeV, the charge 23 pC/bunch, and the emittance less than 10 mm.mrad. The experiment on the gun is planed in the beginning of 2005, and the details will be discussed on the spot.  
WPAP021 Status of PPI (Pohang Photo-Injector) for PAL XFEL 1733
 
  • S.J. Park, C. Kim, I.S. Ko, J.-S. Oh, Y.W. Parc, P.C.D. Park, J.H. Park
    PAL, Pohang, Kyungbuk
  • X.J. Wang
    BNL, Upton, Long Island, New York
 
  Funding: Supported by the POSCO and the MOST, Korea.

A X-Ray Free Electron Laser (XFEL) project based on the Self-Amplified Spontaneous Emission (SASE) is under progress at the Pohang Accelerator Laboratory (PAL). One of the critical R&D for the PAL XFEL* is to develop the Pohang Photo-Injector (PPI) which is required to deliver electron beams with normalized emittance < 1.5 mm-mrad. In order to achieve the required beam quality with high stability and reliability, we will use photocathode with quantum efficiency > 0.1 % and long lifetime. This will greatly lessen the laser energy requirement for producing flat-top UV pulses, and open the possibility of using only regenerative amplifiers (RGAs) to drive the photocathode RF gun. The RGAs can produce mJs output with much better stability than multi-pass amplifiers. Both the Cs2Te and Mg are under consideration for the possible photo-cathode. To demonstrate the suitability of the Mg and Cs2Te for the future 4th generation light source application, an improved BNL-type S-band RF gun with a high-performance load-lock system will be developed for the PPI. In this article, we present the design concept of the PPI, the expected performance, and report on its development status.

*J.S. Oh, S.J. Park et al., "0.3-nm SASE-FEL at PAL," NIM A528, 582 (2004); S.J. Park, J.S. Oh et al., "Design Study of Low-Emittance Injector for SASE XFEL at Pohang Accelerator Laboratory," FEL2004, Italy, 2004.

 
WPAP022 Measurements of Transverse Emittance for RF Photocathode Gun at the PAL 1760
 
  • J.H. Park, I.S. Ko, J.-S. Oh, Y.W. Parc, S.J. Park
    PAL, Pohang, Kyungbuk
  • X.J. Wang
    BNL, Upton, Long Island, New York
  • D. Xiang
    TUB, Beijing
 
  Funding: Supported by the POSCO and the MOST, Korea.

A BNL GUN-IV type RF photo-cathode gun is under fabrication for use in the FIR (Far Infra-Red) facility being built at the Pohang Accelerator Laboratory (PAL). Performance test of the gun will include the measurement of transverse emittance profile along the longitudinal direction. Successful measurement of the emittance profile will provide powerful tool for the commissioning of the 4GLS (4th generation light source) injectors based on the emittance compensation principle. We are going to achieve this withthe use of pepper-pot based emittance meters that can be moved along the longitudinal direction. In this article, we present design considerations on the emittance meter with the resolution of 1 mm mrad.

 
WPAP023 Compact Source of Electron Beam with Energy of 200 kEv and Average Power of 2 kW 1832
 
  • I.V. Kazarezov, V. Auslender, V.E. Balakin, A.A. Bryazgin, A.V. Bulatov, I.I. Glazkov, I.V. Kazarezov, E.N. Kokin, G.S. Krainov, G.I. Kuznetsov, A.M. Molokoedov, A.F.A. Tuvik
    BINP SB RAS, Novosibirsk
 
  The paper describes a compact electron beam source with average electron energy of 200 keV. The source operates with pulse power up to 2 MW under average power not higher than 2 kW, pulsed beam current up to 10 A, pulse duration up to 2 mks, and repetition rate up to 5 kHz. The electron beam is extracted through aluminium-beryllium alloy foil. The pulse duration and repetition rate can be changed from control desk. High-voltage generator for the source with output voltage up to 220 kV is realized using the voltage-doubling circuit which consists of 30 sections. The insulation type - gas, SF6 under pressure of 8 atm. The cooling of the foil supporting tubes is provided by a water–alcohol mixture from an independent source. The beam output window dimensions are 180?75 mm, the energy spread in the beam +10/-30%, the source weight is 80 kg.  
WPAP027 RF Electron Gun with Driven Plasma Cathode 1991
 
  • I.V. Khodak, V.A. Kushnir
    NSC/KIPT, Kharkov
 
  It’s known that RF guns with plasma cathodes based on solid-state dielectrics are able to generate an intense electron beam. In this paper we describe results of experimental investigation of the single cavity S-band RF gun with driven plasma cathode. The experimental sample of the cathode based on ferroelectric ceramics has been designed. Special design of the cathode permits to separate spatially processes of plasma development and electron acceleration. It has been obtained at RF gun output electron beam with particle energy ~500 keV, pulse current of 4 A and pulse duration of 80 ns. Results of experimental study of beam parameters are referred in. The gun is purposed to be applied as the intense electron beam source for electron linacs.  
WPAP028 Modes of Electron Beam Generation in a Magnetron Diode with a Secondary-Emission Cathode 2027
 
  • V. Zakutin, A. Dovbnya, N.G. Reshetnyak
    NSC/KIPT, Kharkov
 
  Experiments have shown that the electron current direction can be varied along the diode axis or perpendicular to the axis, depending on the longitudinal magnetic field amplitude and distribution. The diode had a copper cathode diameter 40 mm and 15 mm anode-cathode gap. Several modes of electron beam generation are realized, namely, open, closed, and intermediate. In the first case, at a cathode magnetic field of ~ 1200 Oe, that falls off approaching the diode output down, and at a cathode voltage of 50 kV, the diode generates a tubular electron beam of a current 50 A and the anode current was about 1 % of the beam current. In the second case, the electron current was going to the anode, the secondary-emission multiplication of electrons being retained. At a cathode voltage of ~ 45 kV, the anode current was ~ 5 A, and the beam current was practically absent. This was attained by decreasing the magnetic field to ~ 1.1…1.2 of the Hell field value and by increasing the magnetic field towards the diode output. In the intermediate mode with a cathode voltage of ~ 45 kV the direct beam current measured was ~ 5 A, and the anode current was ~ 7 A.  
WPAP031 Use of Multiobjective Evolutionary Algorithms in High Brightness Electron Source Design 2188
 
  • I.V. Bazarov, C.K. Sinclair
    Cornell University, Department of Physics, Ithaca, New York
  • I. Senderovich
    Cornell University, Ithaca, New York
 
  Funding: Supported by Cornell University.

We describe the use of multiobjective evolutionary algorithms (MOEAs) for the design and optimization of a high average current, high brightness electron injector for an Energy Recovery Linac (ERL). By combining MOEAs with particle tracking, including space charge effects, and by employing parallel computing resources, we explored a multidimensional parameter space with 22 independent variables for a DC gun based injector which is being constructed at Cornell University. The simulated performance of the optimized injector is found to be excellent, with normalized rms emittances as low as 0.1 mm-mrad for a 77 pC bunch, and 0.7 mm-mrad for a 1 nC bunch. We detail the advantages and flexibility of MOEAs as a powerful tool well suited for wide application in solving various problems in the accelerator field.

 
WPAP032 Emittances Studies at the Fermilab/NICADD Photoinjector Laboratory
 
  • R. Tikhoplav, A.C. Melissinos
    Rochester University, Rochester, New York
  • J.L. Li, P. Piot
    Fermilab, Batavia, Illinois
 
  Funding: This work was supported by the Universities Research Association Inc. under contract DE-AC02-76CH00300 with the U.S. DOE, and by NICADD.

The Fermilab/NICADD photoinjector incorporates an L-band rf-gun capable of generating 1-10 nC bunches. The bunches are then accelerated to 16 MeV with a TESLA superconducting cavity. In the present paper we present parametric studies of transverse emittances and energy spread for a various operating points of the electron source (RF-gun E-field, laser length and spot size, and solenoid settings). We especially study the impact, on transverse emittance, of Gaussian and Plateau temporal distribution of the photocathode drive-laser.

 
WPAP033 State-of-the-Art Electron Guns and Injector Designs for Energy Recovery Linacs (ERL) 2292
 
  • A.M.M. Todd, A. Ambrosio, H. Bluem, V. Christina, M.D. Cole, M. Falletta, D. Holmes, E. Peterson, J. Rathke, T. Schultheiss, R. Wong
    AES, Princeton, New Jersey
  • I. Ben-Zvi, A. Burrill, R. Calaga, P. Cameron, X.Y. Chang, H. Hahn, D. Kayran, J. Kewisch, V. Litvinenko, G.T. McIntyre, T. Nicoletti, J. Rank, T. Rao, J. Scaduto, K.-C. Wu, A. Zaltsman, Y. Zhao
    BNL, Upton, Long Island, New York
  • S.V. Benson, E. Daly, D. Douglas, H.F.D. Dylla, L. W. Funk, C. Hernandez-Garcia, J. Hogan, P. Kneisel, J. Mammosser, G. Neil, H.L. Phillips, J.P. Preble, R.A. Rimmer, C.H. Rode, T. Siggins, T. Whitlach, M. Wiseman
    Jefferson Lab, Newport News, Virginia
  • I.E. Campisi
    ORNL, Oak Ridge, Tennessee
  • P. Colestock, J.P. Kelley, S.S. Kurennoy, D.C. Nguyen, W. Reass, D. Rees, S.J. Russell, D.L. Schrage, R.L. Wood
    LANL, Los Alamos, New Mexico
  • D. Janssen
    FZR, Dresden
  • J.W. Lewellen
    ANL, Argonne, Illinois
  • J.S. Sekutowicz
    DESY, Hamburg
  • L.M. Young
    TechSource, Santa Fe, New Mexico
 
  Funding: This work is supported by NAVSEA, NSWC Crane, the Office of Naval Research, the DOD Joint Technology Office and by the U.S. DOE.

A key technology issue of ERL devices for high-power free-electron laser (FEL) and 4th generation light sources is the demonstration of reliable, high-brightness, high-power injector operation. Ongoing programs that target up to 1 Ampere injector performance at emittance values consistent with the requirements of these applications are described. We consider that there are three possible approaches that could deliver the required performance. The first is a DC photocathode gun and superconducting RF (SRF) booster cryomodule. Such a 750 MHz device is being integrated and will be tested up to 100 mA at the Thomas Jefferson National Accelerator Facility beginning in 2007. The second approach is a high-current normal-conducting RF photoinjector. A 700 MHz gun will undergo thermal test in 2006 at the Los Alamos National Laboratory, which, if successful, when equipped with a suitable cathode, would be capable of 1 Ampere operation. The last option is an SRF gun. A half-cell 703 MHz SRF gun capable of delivering 1.0 Ampere will be tested to 0.5 Ampere at the Brookhaven National Laboratory in 2006. The fabrication status, schedule and projected performance for each of these state-of-the-art injector programs will be presented.

 
WPAP034 Positron Emulator for Commissioning ILC Positron Source 2321
 
  • H. Wang, W. Gai, K.-J. Kim, W. Liu
    ANL, Argonne, Illinois
 
  Funding: U.S. DOE.

It is apparent that the gamma-ray based positron source components including positron linac and damping rings for ILC can not be easily commissioned until the electron beam is fully conditioned at high energies (> 150 GeV). In this paper, we discuss a scheme that could use a short and energetic electron beam scattered through a set of carefully selected targets to simulate certain behaviors of the positron beam, such as beam emittance and energy spread. The basic idea is to make the phase space distribution of the scattered electron beam to reflect certain aspects of the positron beam distributions. Subsequently, the positron source elements such as capture optics, linacs and even damping ring could be effectively commissioned before ILC colliding electron beam is ready. The simulation results using EGS4 for beam scattering and PARMELA for beam dynamics are presented.

 
WPAP035 Emittance Compensation in Flat Beam Production in an RF Gun Linac 2399
 
  • S. Wang
    ANL, Argonne, Illinois
 
  Funding: This research is supported by the U.S. Department of Energy under contract DE-FG02-92ER40747 and the National Science Foundation under contract NSF PHY-0244793.

Ya. Derbenev Proposed a flat beam production method in RF gun Linac, which passes the electron beam through a matched skew quadrupole channel and transform the initially transversely round beam into a flat beam. Fermilab/NICADD Photoinjector Laboratory has performed a lot of experiments, a ratio of 50 of the transverse emittances in x and y plane has been achieved and the ratio of 100 and higher is underway of research. In this paper, the S-shaped flat beam, found both in experiments and simulations, is investigated. The nonlinear transverse force from the RF field when the beam passes the superconducting cavity is found to be one of the sources which produce the transverse S-shape distribution and increase the emittance. An extra solenoid located before the superconducting cavity is proposed to be added to adjust the beam transverse size when the beam passes through the cavity. The resulted transverse nonlinear space-charge force is used to counter-act against the nonlinear transverse force from the RF field. PARMELA simulations have shown that, with proper setup of the extra solenoid, the emittance ratio can be enhanced by a factor of 2 and the S-shaped transverse distribution can also be eliminated.

 
WPAP036 Determination of the Field Enhancement Factor on Photocathode Surface Via the Schottky Effect 2425
 
  • Z.M. Yusof, M.E. Conde, W. Gai
    ANL, Argonne, Illinois
 
  Funding: U.S. Department of Energy.

Using photons with energy that is less than the work function, we employ the Schottky effect to determine the field enhancement factor on the surface of a Mg photocathode. The Schottky effect is manifested via a shift in the threshold for photoemission as the amplitude of the RF in the photoinjector gun is varied. From the threshold condition, we can directly determine the field enhancement factor on the cathode surface. This is a viable technique to obtain the field enhancement factor of surfaces of other materials such as Nb and Cu.

 
WPAP037 Novel Method of Emittance Preservation in ERL Merging System in Presence of Strong Space Charge Forces 2512
 
  • D. Kayran, V. Litvinenko
    BNL, Upton, Long Island, New York
 
  Funding: Work performed under the auspices of the U.S. Department of Energy and partially funded by the US Department of Defence

Energy recovery linacs (ERLs) are potential candidates for the high power and high brightness electron beams sources. The main advantages of ERL are that electron beam is generated at relatively low energy, injected and accelerated to the operational energy in a ERL loop with a common linac, then is decelerated in the same loop down to injection energy and dumped. The intrinsic part of any ERL is a merging system for the low-energy beam with a high-energy beam passing around the ERL loop. One of the challenges for generating high charge high brightness e-beam in ERL is development of merging system, which provides achromatic condition for space charge dominated beam and which is compatible with the emittance compensation scheme. In this paper we present principles of operation of such merging system. We also describe an example of such system, which we call Zigzag or Z-system. We use a specific implementation for R&D ERL at Brookhaven for illustration.

 
WPAP038 Photoemission Studies on BNL/AES/JLab all Niobium, Superconducting RF Injector 2556
 
  • T. Rao, I. Ben-Zvi, A. Burrill, H. Hahn, D. Kayran, Y. Zhao
    BNL, Upton, Long Island, New York
  • M.D. Cole
    AES, Medford, NY
  • P. Kneisel
    Jefferson Lab, Newport News, Virginia
 
  Funding: Under contract with the U.S. DOE, Contract No. DE-AC02-98CH10886.

Photoemission from all niobium superconducting injector is of considerable interest for the development of higher average current electron sources. In the past year, we have generated photocurrent from such an injector by irradiating the back wall of the 1/2 cell cavity with 248 nm and 266 nm laser beams. In this paper, we present the results of these measurements including the quantum efficiency, and its dependence on the field and wavelength. Issues related to the quenching of the cavity by the laser radiation will also be addressed.

 
WPAP039 Progress on Lead Photocathodes for Superconducting Injectors 2598
 
  • J. Smedley, T. Rao
    BNL, Upton, Long Island, New York
  • P. Kneisel
    Jefferson Lab, Newport News, Virginia
  • J.L. Langner, P. Strzyzewski
    The Andrzej Soltan Institute for Nuclear Studies, Centre Swierk, Swierk/Otwock
  • R.S. Lefferts, A.R. Lipski
    SBUNSL, Stony Brook, New York
  • J.S. Sekutowicz
    DESY, Hamburg
 
  Funding: This work was supported by DOE contracts DE-AC02-98CH10886, DE-AC03-76SF00515 and DE-FG02-97ER82336.

We present the results of our investigation of bulk, electroplated and vacuum deposited lead as suitable photocathode materials for superconducting RF injectors. The quantum efficiency of each sample is presented as a function of the wavelength of the incident light, from 310 nm to 190 nm. Quantum efficiencies of 0.3% have been obtained. Production of a niobium cavity with a lead-plated cathode is underway.

 
WPAP041 Time Dependent Quantum Efficiency and Dark Current Measurements in an RF Photocathode Injector with a High Quantum Efficiency Cathode 2681
 
  • R.P. Fliller, H. Edwards
    Fermilab, Batavia, Illinois
  • W. Hartung
    NSCL, East Lansing, Michigan
 
  Funding: This work was supported by Universities Research Association Inc. under contract DE-AC02-76CH00300 with the U.S. DOE and by NICADD.

A system was developed at INFN Milano for preparing cesium telluride photo-cathodes and transferring them into an RF gun under ultra-high vacuum. This system has been in use at the Fermilab NICADD Photo-Injector Laboratory (FNPL) since 1997. A similar load-lock system is used at the TeSLA Test Facility at DESY-Hamburg. Two 1.625-cell high duty cycle RF guns have been fabricated for the project. Studies of the photo-emission and field emission ("dark current") behavior of both RF guns have been carried out. Unexpected phenomena were observed in one of the RF guns. In situ changes in the cathode's quantum efficiency and dark current with time were seen during operation of the photo-injector. These changes were correlated with the magnetostatic field at the cathode.* In addition, multipacting is observed in the RF guns under certain conditions. Recent measurements indicate a correlation between multipacting, anomalous photo-emission behavior, and anomalous field emission behavior. Results will be presented.

*W. Hartung, J.-P. Carneiro, H. Edwards, M. Fitch, M. Kuchnir, P. Michelato, D. Sertore, in Proceedings of the 2001 Particle Accelerator Conference, p. 2239-2241.

 
WPAP042 Progress on Using NEA Cathodes in an RF Gun 2708
 
  • R.P. Fliller, T. G. Anderson, H. Edwards
    Fermilab, Batavia, Illinois
  • H. Bluem, T. Schultheiss
    AES, Princeton, New Jersey
  • M. Huening
    DESY, Hamburg
  • C.K. Sinclair
    Cornell University, Department of Physics, Ithaca, New York
 
  Funding: This work was supported by Universities Research Association Inc. under contract DE-AC02-76CH00300 with the U.S. DOE and by NICADD. AES personnel were supported under DOE SBIR contract #DE-FG02-04ER838.

RF guns have proven useful in multiple accelerator applications, and are an attractive electron source for the ILC. Using a NEA GaAs photocathode in such a gun allows for the production of polarized electron beams. However the lifetime of a NEA cathode in this environment is reduced by ion and electron bombardment and residual gas oxidation. We report progress made with studies to produce a RF gun using a NEA GaAs photocathode to produce polarized electron beams. Attempts to reduce the residual gas pressure in the gun are discussed. Initial measurements of ion flux through the cathode port are compared with simulations of ion bombardment. Future directions are also discussed.

 
WPAP043 Production of Transverse Controllable Laser Density Distribution in Fermilab/NICADD Photoinjector 2783
 
  • J.L. Li, J.L. Li
    Rochester University, Rochester, New York
  • P. Piot, R. Tikhoplav
    Fermilab, Batavia, Illinois
 
  The Fermilab/NICADD photoinjector laboratory consist of a photoemission electron source based on an L band rf-gun. The CsTe photocathode is illuminated by an ultrashort UV laser. The transport line from the laser to the photocathode was recently upgraded to allow imaging of an object plane located ~20 m from the photocathode. This upgrade allows the generation of transverse laser distributions with controlled nonuniformity, yielding the production of an electron beam with various transverse densities patterns. Measuring the evolution of the artificial pattern on the electron bunch provides information that can be used to benchmark numerical simulations and investigate the impact of space charge. Preliminary data on these investigations are presented in the present paper.  
WPAP044 Advanced Electromagnetic Analysis for Electron Source Geometries 2815
 
  • M. Hess, C.S. Park
    IUCF, Bloomington, Indiana
 
  One of the challenging issues for analytically modeling electron sources, such as rf photoinjectors, is how to incorporate fully electromagnetic effects which are generated by the electron beam. The main difficulties that arise in finding an analytical solution of the electromagnetic fields are due to the complex shape of the conductor boundary, as well as the complicated structure of the beam density and current. Both of these problems can be handled self-consistently by using an electromagnetic Green’s function method. In this paper, we present a solution to the exact electromagnetic fields, which were derived from the Green’s function, for a simplified electron source conductor geometry, namely a semi-infinite circular pipe with an endcap. We assume that the beam currents are in the axial direction and satisfy the continuity equation in conjunction with the beam charge density, but may have arbitrary spatial and time dependency. We discuss how these analytical methods may be extended to include in the effect of one or multiple irises, which are found in rf photoinjector systems.  
WPAP045 Ion Back-Bombardment of GaAs Photocathodes Inside DC High Voltage Electron Guns 2875
 
  • J.M. Grames, P. Adderley, J. Brittian, D. Charles, J. Clark, J. Hansknecht, M. Poelker, M.L. Stutzman, K.E.L. Surles-Law
    Jefferson Lab, Newport News, Virginia
 
  Funding: This work was supported by U.S. DOE Contract No. DE-ACO5-84-ER40150.

The primary limitation for sustained high quantum efficiency operation of GaAs photocathodes inside DC high voltage electron guns is ion back-bombardment of the photocathode. This process results from ionization of residual gas within the cathode/anode gap by the extracted electron beam, which is subsequently accelerated backwards to the photocathode. The damage mechanism is believed to be either destruction of the negative electron affinity condition at the surface of the photocathode or damage to the crystal structure by implantation of the bombarding ions. This work characterizes ion formation within the anode/cathode gap for gas species typical of UHV vacuum chambers (i.e., hydrogen, carbon monoxide and methane). Calculations and simulations are performed to determine the ion trajectories and stopping distance within the photocathode material. The results of the simulations are compared with test results obtained using a 100 keV DC high voltage GaAs photoemission gun and beamline at currents up to 10 mA DC.

 
WPAP046 Injection Options for 12 GeV CEBAF Upgrade 2911
 
  • R. Kazimi, J. F. Benesch, Y.-C. Chao, J.M. Grames, G.A. Krafft, M. Tiefenback, B.C. Yunn, Y. Zhang
    Jefferson Lab, Newport News, Virginia
 
  Funding: Work supported by DOE Contract DE-AC05-84ER40150.

Jefferson Lab is planning to upgrade the CEBAF accelerator from 6 to 12 GeV. In order to achieve this, the beam energy at injection into the main accelerator needs to increase from 67 MeV to either 123 or 134 MeV depending on the location of the new experimental hall relative to the accelerator. The present 100 keV electron source and beam formation to 5 MeV will remain unchanged; however, the present accelerating cryomodules in the injector cannot reach the higher injection energies. Consequently, two options for attaining these energies are considered: (1) replacing the present injector cryomodules with new, higher gradient cryomodules, or (2) re-circulating the beam through the existing cryomodules to achieve the necessary energy gain in two passes. In this paper we present simulation results and list the advantages and disadvantages of these two options.

 
WPAP047 Preliminary Results from a Superconducting Photocathode Sample Cavity 2956
 
  • P. Kneisel
    Jefferson Lab, Newport News, Virginia
  • R.S. Lefferts, A.R. Lipski
    SBUNSL, Stony Brook, New York
  • J.S. Sekutowicz
    DESY, Hamburg
 
  Funding: Work supported by the U.S. DOE Contract No DE-AC05-84ER40150.

Pure niobium has been proposed as a photocathode material and recently a successful test has been conducted with a niobium single cell cavity to extract photo-currents from the surface of this cavity. However, the quantum efficiency of niobium is ~2·10-4, whereas electrodeposited lead has a ~15 times higher quantum efficiency. We have designed and tested a photo-injector niobium cavity, which can be used to insert photo-cathodes made of different materials in the high electric field region of the cavity. Experiments have been conducted with niobium and lead, which show that neither the Q- values of the cavity nor the obtainable surface fields are significantly lowered. This paper reports about the results from these tests.

 
WPAP049 A High-Gradient CW RF Photo-Cathode Electron Gun for High Current Injectors 3049
 
  • R.A. Rimmer
    Jefferson Lab, Newport News, Virginia
 
  Funding: This manuscript has been authored by SURA, Inc. under Contract No. DE-AC05-84ER-40150 with the U.S. Department of Energy.

The paper describes the analysis and preliminary design of a high-gradient photo-cathode RF gun optimized for high current CW operation. The gun cell shape is optimized to provide maximum acceleration for the newly emitted beam while minimizing wall losses in the structure. The design is intended for use in future high-current high-power CW FELs but the shape optimization for low wall losses may be advantageous for other applications such as XFELs or Linear Colliders using high peak power low duty factor guns where pulse heating is a limitation. The concept allows for DC bias on the photocathode in order to repel ions and improve cathode lifetime.

 
WPAP050 A High Average Current DC GaAs Photocathode Gun for ERLs and FELs 3117
 
  • C. Hernandez-Garcia, S.V. Benson, D.B. Bullard, H.F.D. Dylla, K. Jordan, C. M. Murray, G. Neil, M.D. Shinn, T. Siggins, R.L. Walker
    Jefferson Lab, Newport News, Virginia
 
  Funding: This work supported by The Office of Naval Research under contract to the Dept. of Energy, the Air Force Research Lab, and the Commonwealth of Virginia.

The Jefferson Lab (JLab) 10 kW IR Upgrade FEL DC GaAs photocathode gun is presently the highest average current electron source operational in the U.S., delivering a record 9.1 mA CW, 350 kV electron beam with 122 pC/bunch at 75 MHz rep rate. Pulsed operation has also been demonstrated with 8 mA per pulse (110 pC/bunch) in 16 ms-long pulses at 2 Hz rep rate. Routinely the gun delivers 5 mA CW and pulse current at 135 pC/bunch for FEL operations. The Upgrade DC photocathode gun is a direct evolution of the DC photocathode gun used in the previous JLab 1 kW IR Demo FEL. Improvements in the vacuum conditions, incorporation of two UHV motion mechanisms (a retractable cathode and a photocathode shield door) and a new way to add cesium to the GaAs photocathode surface have extended its lifetime to over 500 Coulombs delivered between re-cesiations (quantum efficiency replenishment). With each photocathode activation quantum efficiencies above 6% are routinely achieved. The photocathode activation and performance will be described in detail.

 
WPAP055 A 3D Parallel Beam Dynamics Code for Modeling High Brightness Beams in Photoinjectors 3316
 
  • J. Qiang, S.M. Lidia, R.D. Ryne
    LBNL, Berkeley, California
  • C. Limborg-Deprey
    SLAC, Menlo Park, California
 
  Funding: This work was supported by a SciDAC project in accelerator physics which is supported by the U.S. DOE/SC Office of High Energy Physics and the Office of Advanced Scientific Computing Research.

In this paper we report on IMPACT-T, a 3D beam dynamics code for modeling high brightness beams in photoinjectors and rf linacs. IMPACT-T is one of the few codes used in the photoinjector community that has a parallel implementation, making it very useful for high statistics simulations of beam halos and beam diagnostics. It has a comprehensive set of beamline elements, and furthermore allows arbitrary overlap of their fields. It is unique in its use of space-charge solvers based on an integrated Green function to efficiently and accurately treat beams with large aspect ratio, and a shifted Green function to efficiently treat image charge effects of a cathode. It is also unique in its inclusion of energy binning in the space-charge calculation to model beams with large energy spread. Together, all these features make IMPACT-T a powerful and versatile tool for modeling beams in photoinjectors and other systems. In this paper we describe the code features and present results of IMPACT-T simulations of the LCLS and LUX photoinjectors. We also include a comparison of IMPACT-T and PARMELA results, and a comparison of IMPACT-T and ASTRA results.

 
WPAP057 Three-Dimensional Theory and Simulation of an Ellipse-Shaped Charged-Particle Beam Gun 3372
 
  • R. Bhatt, T. Bemis, C. Chen
    MIT/PSFC, Cambridge, Massachusetts
 
  Funding: U.S. DOE: Grant No. DE-FG02-95ER40919, Grant No. DE-FG02-01ER54662, Air Force Office of Scientific Research: Grant No. F49620-03-1-0230, and the MIT Deshpande Center for Technological Innovation.

A three-dimensional (3D) theory of non-relativistic, laminar, space-charge-limited, ellipse-shaped, charged-particle beam formation has been developed recently (Bhatt and Chen, PR:ST-AB, submitted Dec. 2004), whereby charged particles (electrons or ions) are accelerated across a diode by a static voltage differential and focused transversely by Pierce-type external electrodes placed along analytically specified surfaces. The treatment is extended to consider the perturbative effects of anode hole lensing, thermal isolation of the emitter, finiteness and nonuniformities of beam-forming electrodes, and an initial thermal spread. Analytic and semi-analytic results are presented along with 3D simulations utilizing the 3D trajectory code, OMNITRAK. Considerations with regard to beam matching into a periodic magnetic focusing lattice are discussed.

 
WPAP058 The ILC Polarized Electron Source 3420
 
  • A. Brachmann, J.E. Clendenin, E.G. Garwin, R.E. Kirby, D.-A.L. Luh, T.V.M. Maruyama, D.C. Schultz, J. Sheppard
    SLAC, Menlo Park, California
  • R.X.P. Prepost
    UW-Madison/PD, Madison, Wisconsin
 
  Funding: This work is supported by U.S. DOE contracts DE-AC02-76SF00515 (SLAC) and DE-AC02-76ER00881 (UW).

The SLC polarized electron source (PES) can meet the expected requirements of the International Linear Collider (ILC) for polarization, charge and lifetime. However, experience with newer and successful PES designs at JLAB, Mainz and elsewhere can be incorporated into a first-generation ILC source that will emphasize reliability and stability without compromising the photocathode performance. The long pulse train for the ILC may introduce new challenges for the PES, and in addition more reliable and stable operation of the PES may be achievable if appropriate R&D is carried out for higher voltage operation and for a simpler load-lock system. The outline of the R&D program currently taking shape at SLAC and elsewhere is discussed. The principal components of the proposed ILC PES, including the laser system necessary for operational tests, are described.