
ANGULAR MOMENTUM MEASUREMENT OF THE FNPL ELECTRON
BEAM

Y. Sun∗, K.-J. Kim† , University of Chicago, Chicago, IL 60637, USA
P. Piot, K. Desler‡ , D. Edwards, H. Edwards, M. Huening, J. Santucci, FNAL, Batavia, IL 60510, USA

N. Barov, D. Mihalcea, Northern Illinois University, DeKalb, IL 60115, USA
R. Tikhoplav, University of Rochester, Rochester, NY 14627, USA

S. Lidia, LBNL, Berkeley, CA 94720, USA
S.-H. Wang, Indiana University, IN 47405, USA

Abstract
In the flat beam experiment at Fermilab/NICADD Pho-

toinjector Laboratory(FNPL)[1], it is essential to have a
non-vanishing longitudinal magnetic field on the photo-
cathode. The canonical angular momentum of the elec-
tron beam generated by this magnetic field is an important
parameter in understanding the round to flat beam trans-
formation. In this paper, we report our measurements of
the canonical angular momentum, which is directly related
to the skew diagonal elements of the beam matrix before
beam is made flat. The measurements of the other elements
of the beam matrix are also reported.

THEORY

The round-to-flat beam transformation was proposed by
Brinkmann, Derbenev, and K. Flöttmann[2] based on the
idea of flat-to-round transformation by Derbenev[3]. An
extensive theoretical treatment of the transformation was
given by Burov, Nagaitsev and Derbenev[4]. Here we sum-
marize the main results obtained in these papers by using
an approach based on the rotational symmetry and two as-
sociated invariants of the beam matrix[5].

Rotationally Invariant Beam Matrix

The coordinates of a particle in transverse phase space
can be denoted by two vectors:

X ≡
[

x
x′

]
and Y ≡

[
y
y′

]
. (1)

The corresponding4 × 4 beam matrix is then defined by

Σ =
[

〈XXT 〉 〈XY T 〉
〈Y XT 〉 〈Y Y T 〉

]
. (2)

Let R be the4 × 4 rotation matrix :

R =
[

I · cos θ I · sin θ
−I · sin θ I · cos θ

]
, (3)

with I standing for the2 × 2 identity matrix. The beam
matrix is rotationally invariant if:

Σ = R · Σ · R−1. (4)
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The most general form of a rotationally invariant beam
matrix is given by:

Σ = Md · Σ0 · MT
d , with Σ0 =

[
εxT LJ
−LJ εxT

]
. (5)

whereMd is the4 × 4 transfer matrix of a drift space,T
andJ are2×2 matrices defined in Eq. 6, and the quantities
εx, β andL are constants.

T ≡
[

β 0
0 1

β

]
, and J ≡

[
0 1
−1 0

]
. (6)

If the beam matrix is diagonalized through some sym-
plectic transformations, it takes the following form in the
diagonalizing base:

Σdiag =
[

(εx − L)T− 0
0 (εx + L)T+

]
, (7)

whereT− and T+ are diagonal matrices similar toT in
Eq. 6. The beam matrix in Eq. 7 represents a flat beam
which is completely decoupled in the two transverse planes
with (orthogonal) transverse emittances given by:

ε1 = εx − L; ε2 = εx + L. (8)

The fact that rotationally invariant beam matrix has eigen-
valuesε1 andε2 is a general consequence of the two asso-
ciated invariants: Det(Σ) and Tr(ΣJ4ΣJ4), whereJ4 is the
four dimensional unit symplectic matrix.

In the flat beam experiment at FNAL, the photocath-
ode is immersed in a solenoidal magnetic field. Consider
an electron at the photocathode surface with coordinates
given by Eq. 1. The electron coordinates downstream of
the solenoidal field are then given by:

X =
[

x
x′ − κy

]
, Y =

[
y

y′ + κx

]
, (9)

whereκ = eBz

2P , Bz is the longitudinal magnetic field on
the photocathode,P is the particle momentum. From Eq. 9
and assuming there is no correlated moment at the photo-
cathode surface (i.e.〈xx′〉 = 〈xy〉 = . . . = 0), the beam
matrix downstream of the solenoid takes the form:

Σsol =
[

A κσ2J
−κσ2J A

]
, (10)
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whereσ2 = 〈x2〉 = 〈y2〉, σ′2 = 〈x′2〉 = 〈y′2〉, and

A ≡
[

σ2 0
0 κ2σ2 + σ′2

]
. (11)

The beam matrix Eq. 10 is of the formΣ0 in Eq. 5, with
the following identifications:

L = κσ2, ε2
x = ε2

th + L2, β2 =
σ2

σ′2 + κ2σ2
. (12)

whereεth ≡ σσ′ is the “thermal” emittance1. For an an-
gular momentum dominated beam (κσ � σ′), β ≈ 1/κ.

The beam matrix after acceleration in a rotationally sym-
metric structure would also be of the form given by Eq. 10,
with the thermal emittance in general larger than the one
on the cathode due to the space charge effect.

Conservation of Canonical Angular Momentum

The cylindrical symmetry of the system (both of the
photo-emitted beam and of the externally applied fields)
leads to the conservation of canonical angular momentum.

On the photocathode, the electron beam does not have
any mechanical angular momentum. Thus the averaged
canonical angular momentum is:

〈L〉 = eBzσ
2 = 2PL. (13)

As beam propagates outside the solenoidal field, the me-
chanical angular momentum equals to the canonical angu-
lar momentum.

EXPERIMENTAL MEASUREMENTS

Measurement of L
Assuming a laminar beam(i.e., neglecting the termsx′

andy′ in Eq. 9), the canonical angular momentum of an
electron can be inferred from the observation of the beam
transverse density at several locations. Indeed a measure-
ment of the beam radiir1 andr2 at two locations along the
beam linez1 andz2, together with a measurement of the
shearing angleθ of the beam as it drifts between the two
considered locations provides the canonical angular mo-
mentum via:

L = P
r1r2 sin θ

D
, (14)

whereinD = z2 − z1. The method is illustrated in Fig. 1.
To measure the shearing angle we intercept the beam at

locationz1 with a multi-slit mask consisting of horizontal
slit apertures. The thereby generated “beamlets” are then
observed at the locationz2. All the beam transverse density
measurements are performed using optical transition radi-
ation (OTR) screens. An example of such measurement is
illustrated in Fig. 2.

1Our definition of thermal emittance includes both the thermal emit-
tance induced by the photo-emission process together with other thermal-
izing effects that occurs later in the transport line.
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Figure 1: Beam with canonical angular momentum-
induced shearing while drifting. The dark narrow rectan-
gular can be a slit inserted into the beam line in order to
measure the shearing angle.

laser beam at cathode

x [pixel]

y 
[p

ix
el

]

20 60 100 140

20
40
60
80

100
120

beam at z1

x [pixel]

y 
[p

ix
el

]

50 100 150 200

50

100

150

beam at z2 = z1+D

x [pixel]

y 
[p

ix
el

]

50 100 150 200

50

100

150

200

slit image at z2

x [pixel]

y 
[p

ix
el

]

50 100 150 200

50

100

150

Figure 2: One set of images needed to calculate canonical
angular momentum.

By observing the slit images on different OTR screens
downstream, the evolution ofL along the beam line can be
measured. Such a measurement is plotted in Fig. 3. Within
experimental error, the canonical angular momentum of an
electron calculated from different screens agrees with each
other. On another hand, one can measure the photocathode
drive-laser beam size on the photocathode surface, this to-
gether with the knowledge ofBz, provide a measurement
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Figure 3: The canonical angular momentum of an electron:
on the hard-edge of beam spot and averaged over the whole
beam.
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of L at z = 0, which is in good agreement with the canon-
ical angular momentum computed along the beamline. In
Fig. 3 we have also plotted the averaged canonical angular
momentum computed from〈L〉 = Pσ1σ2 sin θ/D.

Figure 3 demonstrates the canonical angular momentum
is conserved for each electron in a laminar beam, thus〈L〉
for the beam is also conserved. Given the beam energy∼
15 MeV in the experiment, we haveL = 〈L〉

2P ≈ 0.62±0.04
mm mrad.

In a separate experiment (with a different laser spot ra-
dius), we have explored the dependence of canonical angu-
lar momentum onBz. Our results, see Fig. 4, confirm the
expected linear dependence. A linear regression of the data
givesd〈L〉/dBz = 0.08 ± 0.02 neV·s/G , to be compared
to d〈L〉/dBz = 0.08 ± 0.03 neV·s/G as evaluated from
Eq. 13.
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Figure 4: The averaged canonical angular momentum of an
electron with different magnetic fields on the cathode.

Measurement of εx and β

From Eq. 5, the RMS beam envelope at locationz in a
drift space is given by:

σ(z) =

√√√√εxβ

[
1 +

(
z − z0

β

)2
]
. (15)

wherez0 is the beam waist location.
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Figure 5: RMS beam envelope in a drift space.

We can measure the RMS beam sizeσ(z) at different
locationsz in a drift space, and fit the thereby measured
beam envelope to Eq. 15. From Fig. 5, we have at the beam
waist location (z0 = 4.79±0.20 m), εx = 0.67±0.04 mm
mrad,β = 1.79 ± 0.28 m.

Prediction of Best Possible Flat Beam Emittances

Now thatL, εx andβ are measured, we can predict the
best possible flat beam emittances one could get down-
stream of the round-to-flat beam transformer. From Eq. 8
we find: ε1 = 0.05 ± 0.04 mm mrad;ε2 = 1.29 ± 0.04
mm mrad. Notice that forε1, the error is comparable to the
emittance itself.

Measurement of Flat Beam Emittances

The cylindrically symmetric beam discussed above is
made flat through a skew quadrupole channel. The experi-
mental setup is detailed in Ref. [1, 6, 7]. Our experimental
conditions here differ from those in previous references,
where the emphasis was put on achieving the best trans-
verse emittance ratio. In the present experiment, however,
no attempt was made to optimize the beam emittance by
adjustingBz or σ. These latter values were kept identical
to those used for the measurement ofL reported in Fig. 3.
Note also the bunch charge (∼ 1 nC) was twice as large as
in Ref. [1]. The results for thenormalized emittances are:
εn
1 = 1.5±0.3 mm mrad;εn

2 = 59±9 mm mrad. The afore-
mentioned errors only include the statistical errors arising
from the calculation of the RMS beam or beamlet sizes.

CONCLUSIONS

The measurement of rotationally invariant beam matrix
upstream of the skew quadrupole channel gives the upper
limit of the achievable flat beam emittances. This allows
one to do parametric studies to prepare a beam with po-
tential to be manipulated into a flat beam with high emit-
tance ratio, without having to actually go through the skew
quadrupole channel.
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