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Abstract

The longitudinal and transverse dynamics of a heavy ion
fusion beam during the drift compression and final focus
phase is studied. A lattice design with four time-dependent
magnets is described that focuses the entire beam pulse
onto a single focal point with the same spot size.

LONGITUDINAL DRIFT COMPRESSION

In the currently envisioned configurations for heavy ion
fusion, it is necessary to longitudinally compress the beam
bunches by a large factor after the acceleration phase and
before the beam particles are focused onto the fusion target.
The objective of drift compression is to compress a long
beam bunch by imposing a negative longitudinal velocity
tilt over the length of the beam in the beam frame. Be-
cause the space-charge force increases as the beam is com-
pressed, either a larger focusing force is needed to confine
the beam in the transverse direction or the beam radius will
grow. It is advantageous to have a non-periodic quadrupole
lattice along the beam path when the beam is undergoing
longitudinal compression. In this paper, we describe the
design of such a lattice with four final focusing magnets
that focus the beam onto the target. The designed lattice
is expected to apply for the entire beam pulse. In particu-
lar, different slices should be focused onto the same focal
point at the target. This is difficult with a fixed lattice if
the beam current or velocity varies during the pulse. One
solution is to use a time-dependent lattice which provides a
different focusing strength for different slices of the beam
pulse. We demonstrate that the entire pulse can be com-
pressed and focused onto the same focal point on the tar-
get by using four time-varying quadrupole magnets at the
very beginning of drift compression. The following set of
beam parameters typical of heavy ion fusion is used in the
present study. We consider a Cs+ beam with rest mass
m = 132.9 amu, kinetic energy (γ − 1)mc2 = 2.43 GeV,
and initial beam half-length zb0 = 5.85 m. The goal is to
compress the beam by a factor of 21.8. The final average
current is taken to be 〈If 〉 = 2254 A.

We use a one-dimensional warm-fluid model [1, 2] to
describe the longitudinal dynamics of drift compression.
For the longitudinal electric field, the conventional g-factor
model is adopted, with eEz = − (

ge2/γ2
)
∂λ/∂z and

g = 2 ln (rw/rb). Here, e is the charge, λ(t, z) is the line
density, rw is the wall radius, and rb is the average beam
radius. We also allow for an externally applied axial focus-
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ing force Fz = −κzz. In the beam frame, the warm-fluid
equations for the line density λ(t, z), longitudinal velocity
vz(t, z), and longitudinal pressure pz(t, z) are given by

∂λ

∂t
+

∂

∂z
(λvz) = 0 ,

∂vz

∂t
+ vz

∂vz

∂z
+

e2g

mγ5

∂λ

∂z
+

κzz

mγ3
+

r2
b

mγ3λ

∂pz

∂z
= 0 ,

∂pz

∂t
+ vz

∂pz

∂z
+ 3pz

∂vz

∂z
= 0 . (1)

We treat g and rb as constants for present purposes. Among
all of the self-similar solutions [1] admitted by the nonlin-
ear hyperbolic partial differential equation system (1), the
parabolic self-similar solution is the most suitable for the
purpose of drift compression, and has the form of [1]

λ(t, z) = λb(t)
(

1 − z2

z2
b (t)

)
, vz(t, z) = −vzb(t)

z

zb(t)
,

pz(t, z) = pzb(t)
(

1 − z2

z2
b (t)

)2

,
dzb(t)

dt
= −vzb(t).

(2)

Following the derivation in [1], we obtain the familiar lon-
gitudinal envelope equation

d2zb

ds2
+ κzzb − Kz

1
z2
b

− ε2
l

1
z3
b

= 0, (3)

where s = βct is the normalized time variable, Kz ≡
3Nbe

2g/2mγ5β2c2 is the effective longitudinal self-field
perveance, Nb is the total number of particles in the bunch,

and εl ≡ (
4r2

bW/mγ3β2c2
)1/2

is the longitudinal emit-
tance. In the drift compression scheme considered in this
paper, the longitudinal emittance is taken to be ε l = 1.0 ×
10−5 m, where Kz = 2.88× 10−5 m , corresponding to an
average final current 〈If 〉 = 2254 A, zbf = 0.268 m, and
g = 0.81. An initial longitudinal focusing force is imposed
for s < 150 m so that the beam acquires a velocity tilt
z′b = −0.0143 at sb = 150 m. The axial beam size zb(s),
obtained numerically from the Eq. (3), is plotted together
with the velocity tilt z ′

b(s) in Fig. 1. A pulse shaping tech-
nique has also been demonstrated so that any initial pulse
shape can be shaped into a parabolic one which can then be
self-similarly compressed [1, 2].

LATTICE AND TRANSVERSE DYNAMICS

For each slice in a bunched beam, the transverse dynam-
ics in a quadrupole lattice is described approximately by
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Figure 1: Dynamics of the beam half-length zb(s).

the transverse envelope equations:

d2a(s, z)
ds2

+ κqa(s, z) − 2K(s, z)
a(s, z) + b(s, z)

− ε2
x

a(s, z)3
= 0,

d2b(s, z)
ds2

− κqb(s, z) − 2K(s, z)
a(s, z) + b(s, z)

− ε2
y

b(s, z)3
= 0,

(4)

where K(s, z) ≡ 2e2λb(s)[1 − z2/z2
b (s)]/mγ3β2c2zb(s)

is the transverse perveance. Here, z is the longitudinal
coordinate for different slices, which enters the equations
only parametrically. Because K(s, z) is an increasing func-
tion of s, it is advantageous to increase the strength of
κq(s) to reduce the expansion of the beam radius. Since
the quadrupole lattice is not periodic, the concept of a
“matched beam” is not well defined. However, if the the
non-periodicity is small, we can seek an “adiabatically-
matched” beam [1]. We describe here the design of a
non-periodic lattice which provides the required control of
beam radius when the beam is compressed. The drift com-
pression and final focus lattice should apply for all slices
in a bunched beam. In particular, each slice of the beam
should be focused onto the same focal point at the target. A
fixed lattice designed for one slice of the beam will not fo-
cus other slices onto the same focal point. Actually, most of
the other slices cannot be focused at all due to their differ-
ent perveance and emittance. Our goal can be achieved by
designing a drift compression and final focus lattice for the
central slice (z = 0), and then replacing four quadrupole
magnets at the beginning of the drift compression by four
time-dependent magnets whose strength varies about the
design values for the central slice. The time-dependent
magnets, which provide a slightly different focusing lat-
tice for different slices, are placed at the beginning of the
drift compression because the engineering constraints of
time dependent magnets are generally easier at the 100 ns
timescale than they are at the 10 ns timescale.

First, we design the drift compression and final focus
lattice for the central slice at z = 0. It is intuitive that a
lattice, which keeps both the vacuum phase advance and the
depressed phase advance constant, is less likely to induce
beam mismatch [3]. Constant vacuum phase advance and
constant depressed phase advance requires (when η � 1)

η2

(
B′

[Bρ]

)2

L4 = const., K

(
2L

〈a〉
)2

= const., (5)

where η is the filling factor, L is the lattice period, B ′ is
field gradient of the magnets, and 〈a〉 is the average beam
radius. For the drift compression scheme considered here,
Kf/K0 = 21.8. If we allow 〈a〉 to increase by a factor of
2.33, i.e., 〈a〉f / 〈a〉0 = 2.33, we obtain Lf/L0 = 1/2,
and (ηB′)f/(ηB′)0 = 4. We also need to specify η, B′,
and L. If we choose Li = L0 exp [− (ln 2) si/sf ] , and
B′

i = const., then from Eq. (5), ηi = η0 exp [(ln 4) si/sf ] ,
where si =

∑i−1
j=0 Lj . We also choose self-consistently

the following system parameters: σv = 72 ◦, B′
i =

31.70 T/ m, L0 = 6.72 m, and η0 = 0.0725. The fo-
cusing strength of each magnet is κ̂ = 0.38 m−2 . Let N
denote the total number of quadrupole magnet sets. From
sf =

∑N−1
j=0 Lj , we obtain N = 53.
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Figure 2: Envelope dynamics for the central slice.

The resulting lattice design is illustrated in Fig. 2 to-
gether with the solutions to the transverse envelope equa-
tions. After determining the non-periodic lattice layout, we
search iteratively for the adiabatically-matched solutions.
The solutions plotted in Fig. 2 are adiabatically-matched
because the envelope is locally matched and contains no
oscillations other than the local envelope oscillations. On
the global scale, the beam radius increases monotonically.
From the numerical solution shown in Fig. 2, the average
beam size increases by a factor of 2.33, which agrees with
the design assumption. The final focus magnets, consist-
ing of four quadrupole magnets with different strength, will
assure that the envelope converge in both directions at the
exit of the last focusing magnet (both a ′ and b′ are nega-
tive ). Right after the last focusing magnet, the beam enters
the neutralization chamber where the space-charge force is
neutralized and the beam is focused onto a focal point at

zfol = − a

∂a/∂s

∣
∣
∣∣
s=sff

= − b

∂b/∂s

∣
∣
∣∣
s=sff

, (6)
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where zfol is the distance between the focal point and the
exit from the last final focus magnet, and sff is the distance
from the beginning of the drift compression to the exit from
the last final focus magnet. It is necessary that a/ (∂a/∂s)
and b/ (∂b/∂s) have the same value at s = sff for a fo-
cal point to exist. The transverse spot size measured by
the envelope amplitudes at the focal point afol and bfol is
determined by the emittance and incident angle at s = sff ,

afol =
εx

∂a/∂s

∣
∣
∣∣
s=sff

, bfol =
εy

∂b/∂s

∣
∣
∣∣
s=sff

. (7)

For the central slice at z = 0, we obtain zfol =
5.276 m, and afol = bfol = 1.22 mm .

For other slices (z �= 0), the objective is to manipulate
the beam and magnet configuration so that the beam par-
ticles can be focused onto a focal region with the same or
smaller spot size,

zfol = 5.276 m, afol ≈ bfol � 1.22 mm . (8)

We observe, for the line density profile λ(s, z) = λb(s)[1−
z2/z2

b (s)], that the solution to the transverse envelope
equations for all of the slices can be scaled down from that
of the central slice according to






a(s, z)
b(s, z)

∂a(s, z)/∂s
∂b(s, z)/∂s





 =

√
1 − z2/z2

b (s)







a(s, 0)
b(s, 0)

∂a(s, 0)/∂s
∂b(s, 0)/∂s





 ,

(9)
provided the emittance is negligibly small or scales with
the perveance according to (εx, εy) ∝ 1− z2/z2

b (s). How-
ever, the emittance in general is small but not negligible,
and does not scale with the perveance. In fact, during adi-
abatic drift compression or pulse shaping, the emittance
scales with the beam size, i.e., εx ∝ a and εy ∝ b. In
this paper, we assume that the initial emittance scales with
beam size, and that for each longitudinal slice the normal-
ized emittance is conserved. This implies that the scaling
in Eq. (9) and the requirement in Eq. (8) can’t be satisfied.

One solution to this difficulty is to vary the strength of
four magnets in the very beginning of the drift compres-
sion for different value of z such that the desired scaling
in Eq. (9) holds at s = sff . Combined with Eqs. (6) and
(7), this will guarantee the satisfaction of the requirement
in Eq. (8). This is a viable solution because the emittance,
and therefore the departure from the desired scaling, are
small. Numerically, the necessary variation of the strength
of the magnets is found by a 4D root-searching algorithm.
Shown in Fig. 3 is the dynamics of a(s, z) and b(s, z) for
z/zb(s) = 0.968, when the strength of the 3rd, 5th, 7th and
9th magnets are modified to satisfy Eq. (9) at s = sff . The
initial conditions are taken to be those satisfying Eq. (9) at
s = 0. As evident for Fig. 3, a small perturbation in the
strength of the magnets introduces a small envelope mis-
match in such a way that Eq. (9) is satisfied at s = sff . We
note that a similar scaling does not exist for 0 < s < sff .
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Figure 3: Envelope dynamics for the slice near the front of
the beam pulse with z/zb(s) = 0.968.
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Figure 4: Strengths of the 3rd, 5th, 7th, and 9th magnets as
functions of z/zb(s).

Plotted in Fig. 4 are the strengths of the 3rd, 5th, 7th and
9th magnets as functions of z which are able to focus the
entire beam onto a focal region with the same spot size. It
is also possible to choose other sets of four magnets as time
dependent ones to achieve the same objective. In principle,
we can use this method to correct any deviation from re-
quirement (8) due to other possible mechanisms, such as
momentum spread and magnet imperfections.
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