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Abstract
A new kind of coherent radiation induced by uniformly

moving charge is introduced. It appears as a wavepacket
forerunning ahead of the charge. It was derived as a
complementary case of existing theory of resonant
wakefield extended to include the exotic “overturned
wake” affected by the leading front distortions due to
dispersion. Corresponding conditions, causality and
potential realizations in special types of slow-wave
systems are analyzed and discussed. Those can include
moving media and meta-materials, plasma and some of
periodic structures.

INTRODUCTION
Resonant long-range wakefields have common nature

with the Cherenkov effect and are very well studied for
about half a century.  Classic wakefileds are generated
behind the short bunch (or charge) at the following
conditions: i) synchronism between the charge velocity

and modal phase velocity: vv ph = ; ii) normal dispersion

of the slow-wave system (or medium): phgr vv ≤ .

In this paper we consider the situation when

phgr vvv => .  So far it was widely assumed that no any

resonant propagating field could be generated in this case.
From the other hand, some TWTs are operating
successfully in the vicinity of the 

phgr vv ≈  [1].

Theoretical analysis [2,3] predicts the resonant wave to be
emitted in front of the bunch at vvgr >  similarly as it

takes place in a super-radiant single-pass FEL.  We shall
distinguish such a reversed “wakefiled” considered here
from “reversed Vavilov-Cherenkov radiation”. This term
was introduced originally by Veselago in 1968 [4] and
refers to more trivial case of negative group velocity in a
medium.

RESONANT FIELDS INDUCED IN A
SLOW-WAVE SYSTEM

To find the fields induced by a charge in an arbitrary
slow-wave guide it is convenient to apply the method of
eigenmodes 

ss HE ±±

��

,  of variable amplitudes [5]. Along

with Fourier-transformation it allows taking into account
charge distribution in the bunch as well as dispersion
effect for the fields in the time-domain [6,2].  Assuming
point charge q of limited lifetime vL /0 =τ  propagating

along a semi-infinite waveguide with transverse
coordinate )(z⊥ρ�  one can derive the following

expression for the resonant modal fields induced:
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Π(x) is the symmetric Heaviside function: 2/1)0( =Π ;
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vzt 11 = , and, for the 2nd - order dispersion [2,7]:
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In the limit of linear dispersion (i.e., 0→dhdv sgr
) the

field amplitude ),( tzA L
s

 at sgrvv ≠  is proportional to

the following propagating factor:

( ) ( )[ ] ( ) ( )( )sgrvvzvttt −−Π−Π−Π /011 τ . (2)

One can see from (1) that coherent propagating waves are
emitted under the following conditions:

cvvQ sgrs >>−2 , ssgr vvLT 1
11

1 /2 ωπ>>−= −− . (3)

Figure 1: Space-time diagram for the resonant field
radiated at anomalous dispersion.

The fields (1,2) were derived without any limitation
imposed on the relationship between the group and charge
velocities and have to be valid for both cases: vvgr <
and vvgr > . The leading (group) front of the radiated
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field is subject to diffusion (1) because of non-linearity of
anomalous dispersion.
Along with the conventional situation when vv sgr < ,

the case vv sgr >  obeys the causality principle as well.

At vv sgr >  the field surpasses the charge (see Fig. 1)

and is no longer a normal wake. One can see from (1,2),
in both cases the waveform is defined through the
retarded argument 01 >t , which is always less than the

current time t:  01 >
−

−≡−
sgrvv

zvt
tt . In other words, the

fields are defined by the perturbations occurring in past
time.

SYSTEMS WITH ANOMALOUS
DISPERSION

Dispersive and moving medium
The condition of anomalous dispersion in an

unbounded motionless medium having refraction index

medn  is trivial:

01 <<− ωω ddnn medmed .  (4)

Usually anomalous dispersion is accompanied by
resonant absorption of the molecules that breaks
corresponding constraint in (3). However, anisotropic
“metamaterials” [8,9,10] with unusual properties due to
negative dielectric macroscopic permitivity (or negative
magnetic permeability) can have 0<ωddnmed

 [11] and,

maybe, moderate losses at some frequencies.
One can obtain an anomalous dispersion in a normal

medium moving with the velocity cv medmed β
�

� = .  If the

medium flow is non-relativistic, collinear to the phase
velocity, and higher order dispersion is negligible one can
find directly from [12]:
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For a cold plasma formed by (relativistic) electrons
moving with velocity 

medβ  through a motionless

neutralizing background (ions) the solution of the
dispersion equation is well known:

( )1±±=− pmedphgr ωωβββ , (6)

where 
medgr ββ = , the signs ± correspond to slow and

fast waves respectively, )( 3
000 medp mnq γεω =  is the

plasma frequency, and 211 medmed βγ −=  is the relativistic

factor for the moving medium.
Thus one can provide 

phgr ββ >  for slow-wave in

drifting plasma or in a passive normal medium at
( )22 +> medmedmed nnβ , provided high-order dispersion and

dissipation effects are not significant.

Dispersive or moving medium in a conducting
pipe

For a pipe filled with motionless dispersive medium
( 0≠ωddnmed

) one can easily obtain the following

condition of anomalous dispersion ( 0>> phgr vv ):
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Let us consider now a pipe with moving medium.
Using Lorentz’ transformations one can find the
dispersion and the following condition of anomalous
dispersion:

medmed

medmedmed
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nhn

g β
β

γ <
−

> ,
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22

(8)

where sg  is the modal transverse wavenumber

( bjg ss /0=  for a cylindrical pipe of radius b), sj0  is the

s-th root of the Bessel function (of the first kind of the
zero-th order for monopole mode).

Relativistic plasma can be a good candidate for
anomalous system to satisfy (8). But self-consistent
behavior of the plasma makes the analysis more
complicated than it is presented here. Along with the
active character of the system it can diminish the
simplified concept of group velocity.

Periodic slow-wave systems
In a long periodic slow-wave structure the group

velocity does not depend on the harmonic number for the
given frequency. Consequently, one can always find some
nth spatial harmonic for which 0>> nphgr vv  in the

vicinity of the passband middle provided
{ }nNN fper ,2max> . Moreover, one can anticipate that

ohmic losses will satisfy the condition (3) even at room
temperatures.

Metal helix was the first classical metal slow-wave
structure and continues to be employed successfully in
numerous TWTs and BWOs for more than fifty years. Its
specific dispersive properties can be applied directly to
our case of interest. For instance, helical structures
designed to operate at non-relativistic beam energies can
have 0>ωddv ph

 along with 0>grv  at some

frequencies for the first and the second space harmonics
[1,13,14].

One of such structures is four-thread helix in a pipe
depicted in Figure 2. The lowest fundamental mode is
quadrupole mode (f≈7.3 GHz, Q≈4000) having 

grβ =-

0.61 for the phase advance per cell ϑ=π/2.
Correspondingly, for the space harmonic at ϑ=3π/2 at the
same frequency we have grβ =+0.61 and phβ =0.21.  So,

~12keV electron (or ~7MeV proton) bunch having
substantial quadrupole component will induce this mode
as a forerunning wave.  Monopole mode has 

grβ =+0.57

group velocity at ϑ=π/2 (f≈17GHz, Q≈9000).
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Figure 2: Example of helical slow-wave structure (metal
pipe is not shown).

For the 1st spatial harmonic (at ϑ=5π/2, monopole mode)
one obtains phβ =0.29 at the same group velocity and

frequency.  It means that ~25keV electron (or ~26MeV
proton) bunch can radiate the reverted “wakefield”.

In open waveguides [15,16,17] the group velocity is
naturally high and approaches to the speed of light.
However, at shorter wavelengths (infrared and optical
range) we usually have πϑ >> , oversized mode of
operation 1>>fN , no slow waves in the system [17] or

the number of slow and fast harmonics interacting with
the bunch is too big [18] resulting in degradation of
efficiency and length of interaction.

DISCUSSION
At longer wavelengths and low-energy bunches the

simplest proof-of-principle system would be some of
metal-dominated periodical structures.

Resonant wakefields can affect performance of some
high intensity ion linacs (especially RFQ).

BBU effect can occur at 0>> phgr vv . In the absence of

reflections, beam break-up would appear as diffusion and
shortening of the leading front of the beam pulse (instead
of trailing edge shortening for conventional BBU).

Hypothetical laser acceleration scheme in the media
having 0>> phgr vv  requires the bunch to be injected

before the driving electromagnetic (laser) pulse front
edge. Analogously, in the case of collinear acceleration
driven by a charged bunch in such a medium, its radiation
will “push” ahead the bunch to be accelerated in front of
the driving bunch.

The treatment given here is not applicable directly to
the Cherenkov radiation. However, the group velocity
concept could be very useful in studying this effect in

more general case when phgr vv ≠ . For example, the

pre-threshold short-pulse radiation [19,20,21] can be
explained qualitatively as a normal wake at

phgrph vvvv ≈<<− .
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