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Abstract

We present an analysis of envelope perturbations evolv-
ing in the limit of a fully space-charge depressed (zero
emittance) beam in periodic, thin-lens focusing channels.
Both periodic solenoidal and FODO quadrupole focusing
channels are analyzed. The phase advance and growth rate
of normal mode perturbations are analytically calculated
as a function of the undepressed particle phase advance to
characterize the evolution of envelope perturbations.

INTRODUCTION

The KV envelope equations are often employed to model
the transverse evolution of the envelope of beam particles
in intense beam transport channels[1]. For periodic focus-
ing channels, there have been no fully analytical studies
of perturbations in the beam envelope evolving about the
matched beam envelope. Here we analytically calculate
properties of small-amplitude elliptical envelope perturba-
tions in the limit of full space-charge depression for several
periodic thin-lens transport channels. Because the thin-lens
model provides a reasonable approximation to the focusing
effects of more realistic applied focusing elements, results
derived provide a guide to the properties of envelope per-
turbations associated with space-charge-dominated beams.

ENVELOPE MODEL

The KV envelope equations for a fully depresed coast-
ing beam with elliptical edge radii rx = 2

√〈x2〉, ry =
2
√〈y2〉 aligned along the transverse x and y axes are [2, 3]

r′′j (s) + κj(s)rj(s) − 2Q

rx(s) + ry(s)
= 0, (1)

where j ranges over x and y, Q is the dimensionless beam
perveance, and s is the axial coordinate. The equations (1)
apply directly to a beam in a quadrupole focusing channel
with κx = −κy , but for solenoidal focusing one has to
assume zero beam canonical angular momentum with κx =
κy and interpret all results in a rotating Larmor frame[2,
App. A]. The equations can be written in terms of scaled
sum and difference coordinates R± = (rx ± ry)/(2

√
2Q)

as

2R′′
+(s) + 2κx(s)R+(s) − 1

R+(s)
= 0,

2R′′
−(s) + 2κx(s)R−(s) = 0

(2a)
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for solenoidal focusing, and

2R′′
+(s) + 2κx(s)R−(s) − 1

R+(s)
= 0,

2R′′
−(s) + 2κx(s)R+(s) = 0

(2b)

for quadrupole focusing. In free drift regions κ x(s) =
κy(s) = 0, and the equations can be integrated by using
constancy of envelope Hamiltonian

R′2
+(s) − ln R+(s) = const (3)

to yield[2]

ln
R+(0)
R+(s)

= R′2
+(0) −

{

erfi(−1)

[

erfiR′
+(0)+

eR′2
+ (0)s√

πR+(0)

]}2

,

(4a)

R−(s) = R−(0) + sR′
−(0), (4b)

where erfi(z) = erf(iz)/i is the imaginary error function.
Without loss of generality[2, Sec. II E], we assume that

the length of the free drift interval between the two adjacent
thin lenses is 2 as in Fig. 1. By symmetry we need only to
consider the envelope evolution of the beam between two
neighboring lenses only. We take the first lens to be at axial
location s = −1 and the second one to be at s = 1. We
also assume that in alternating gradient channel the second
lens (at s = 1) is focusing in x. Then for both thin lens
solenoids and quadrupoles we take near s = 1

κx(s) = 1
f δ(s − 1), (5)
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FIG. 1: Matched beam envelopes R±(s) and transport lattice for
(a) solenoid, and (b) FODO quadrupole thin-lens channels.
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where f = const is the thin lens focal length and δ(s) is
the Dirac delta-function. The focal length f can be related
to the undepressed particle phase advance over one lattice
period σ0 as [2, Sec. II D]

1
f =

{
2 sin2 σ0

2 , solenoidal focusing,
sin σ0

2 , quadrupole focusing.
(6)

We analyze the perturbations of the envelope coordinate
vector R(s) = (R+(s), R′

+(s), ζ(s)R−(s), ζ(s)R′
−(s))

from the mid-drift at s = 0 to the next mid-drift at s = 2.
Here, ζ(s) = 1 when the next lens to be traversed is focus-
ing, and ζ(s) = −1 when the next lens is defocusing.

PERTURBATIVE ANALYSIS

To analyze the first-order perturbations in the coordi-
nate vector R(s) we compute the Jacobian matrix M(0, 2)
where M(s1|s2) = ∂R(s2)/∂R(s1) and derivatives are
evaluated for a matched envelope. Since M(0|2) is sim-
plectic, then the first-order perturbations are stable if and
only if all eigenvalues of M lie on the unit circle |z| = 1.

In calculating M(0|2), we henceforth denoteF(s±0) ≡
limδ→±0 F(s + δ) to represent the discontinuous action of
the thin lenses on the beam envelope functions. To exploit
lattice symmetries, we split the interval (0, 2) into three
parts (0, 1− 0), (1− 0, 1+ 0) and (1 + 0, 2), and calculate
M(0, 2) as M(0|2) = M(1+0|2)M(1−0|1+0)M(0|1−
0). By symmetry, M(1 + 0|2) = M(0| − 1 + 0)−1. Thus,

M(0|2) = Mf(−1 + 0)−1MsMf (1 − 0), (7)

where Ms = M(1 − 0|1 + 0) is the “singular Jacobian”
associated with the thin lens focusing kick, and Mf (s) =
M(0|s) for |s| < 1 is the “free drift Jacobian” associated
with the half-drift.

To evaluate Ms, we consider the action of the thin lens
according to Eqs. (2) and (5). We obtain

Ms =







1 0 0 0
− 1

f 1 0 0
0 0 1 0
0 0 − 1

f 1





 , Ms =







1 0 0 0
0 1 − 1

f 0
0 0 −1 0
1
f 0 0 −1





 (8)

for solenoidal and quadrupole channels respectively.
To evaluate Mf (s), the free expansion solutions in

Eqs. (4) and the matched beam symmetry condition
R′

+(0) = 0 are employed to evaluate Jacobian elements:

Mf(s) =







R+(s)−sR′
+(s)

R+(0) 2R+(0)R′
+(s) 0 0

− s
2R+(0)R+(s)

R+(0)
R+(s) 0 0

0 0 1 s
0 0 0 1







. (9)

To complete the evaluation of Mf(1 − 0), we find rela-
tions of the elements to σ0 by deriving equations connect-
ing R+(1 − 0) ≡ R+(1), R′

+(1 − 0), and R+(0) to these
quantities for the matched beam envelope. By symmetry,
for a periodic, matched envelope

R′
±(1 − 0) = −R′

±(1 + 0) , (10)

For solenoids, Eqs. (2a) and (5) can be integrated once
about s = 1 to obtain

R′
±(1 + 0) = R′

±(1 − 0) − 1
f R±(1).

Combining these constraints with the matching conditions
(10), we get

R′
±(1 − 0) = 1

2f R±(1). (11)

Similarly, using Eqs. (2b) and (5) for alternating gradient
focusing and matched beam symmetries (10), we obtain

R′
±(1 − 0) = 1

2f R∓(1). (12)

The solenoidal and quadrupole matching conditions in
Eq. (12) for R+ can be expressed as

k̂R+(1) = 2R′
+(1 − 0), (13)

where k̂ =

{
1
f = 1 − cosσ0, solenoidal focusing,
1

2f2 = 1
4 (1 − cosσ0), quadrupole focusing.

Applying Eqs.(3) between s = 0 and s = 1 − 0 with the
matched beam condition R ′

+(0) = 0 leads to

R+(1) = R+(0)eR′2
+(1−0). (14)

Using Eqs. (13) and (14) in Eq. (4) then yields

k̂ = 2
√

πe−R′2
+(1−0)R′

+(1 − 0) erfiR′
+(1 − 0). (15)
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FIG. 2: Phase advances (σ±) and growth factors (γ±) for the
breathing and quadrupole modes for a thin-lens solenoidal focus-
ing channel and a fully depressed beam. Continuous focusing
model predictions for σ± are superimposed (dashed curves).
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Equations (13)–(15) provide the needed constraints to
relate the elements of Mf (1 − 0) to σ0. Elements of
Mf (−1+0) can be calculated from these constraints using
the matched beam symmetries

R+(−1) = R+(1), R′
+(−1+0) = −R′

+(1−0). (16)

For solenoidal focusing R± are uncoupled, and
M(0|2) is of block diagonal form with M(0|2) =[M+(0|2) 0

0 M−(0|2)
]
, where M±(0|2) are 2 × 2 symplectic

matrices that can be independently analyzed for the stabil-
ity of perturbations. We compute M±(0|2) from Eq. (7):

M+(0|2) =




R+(−1)+R′

+(−1+0)

R+(0)
2R+(0)R′

+(−1 + 0)
1

2R+(0)R+(−1)

R+(0)

R+(−1)





−1 

 1 0
− 1

f
1








R+(1)−R′

+(1−0)

R+(0)
2R+(0)R′

+(1 − 0)

− 1
2R+(0)R+(1)

R+(0)

R+(1)





=



 cos σ0 − 4R′2
+(1 − 0) cos2(σ0

2
) 2

R2
+(0)

f
[1 − 2R′2

+(1 − 0)]
−f

R2
+(0)

cos2(σ0
2

)[1 − cos σ0 + 4R′2
+(1 − 0) cos2(σ0

2
)] cos σ0 − 4 cos2(σ0

2
)R′2

+(1 − 0)



 ,

M−(0|2) =

[
cos σ0 1 + cos σ0

−1 − cos σ0 cos σ0

]
.

(17)

Eigenvalues λ± of the matrices M±(0|2) are

λ+ = cosσ0 − 4R′2
+(1−0) cos2(σ0

2 ) ± 2i cos(σ0
2 ),

·
√[

1−2R′2
+(1−0)

][
sin2(σ0

2 )+2R′2
+(1−0) cos2(σ0

2 )
]

λ− = cosσ0 ± i sinσ0.
(18)

Real-valued mode phase advances σ± and growth factors
γ± per lattice period satisfy λ± = γ±eiσ± . With proper
branch selection[2] we get

σ+ = arg λ+ with + sign in Eq. (18),

σ− = σ0,
(19)

and growth factors as

γ+ =

{
1, stable,√

2
[
cosσ0 − 4R′2

+(1−0) cos2(σ0
2 )
]2− 1, unstable,

γ− = 1.

These solutions are plotted in Fig. 2 as a function of σ0.
The extent of the band of instability (γ+ �= 1) in σ0 can be
calculated from γ+ directly as

σ0∈
[

arccos

(

1−
√

2π

e
erfi

1√
2

)

, π

]

≈ [116.715◦, 180◦].

The stability of quadrupole focusing can be investigated
analogously except that we must work with the full 4×4 Ja-
cobian matrix M(0|2). After multiplying out the matrices
in Eq. (7) and calculating the eigenvalues using the con-
straints in Eqs. (12)–(15) yields

λ = w − 1
2 k̂ ± i

√
wk̂+

[
1− 1

2 k̂
][

k̂ + 8R′2
+(1−0)

]
, (20)

where w = ±
√[

1 − 1
2 k̂
][

1 − 1
2 k̂ − 8R′2

+(1−0)
]

and k̂ is
given by Eq. (13). These eigenvalues can be employed
to calculate phase advances (σB and σQ) and growth fac-
tors (γB and γQ) of the breathing and quadrupole modes as

σB,Q = 2 argλ and γB,Q =
∣
∣λ2
∣
∣ (see Fig. 3). Using Eqs.

(15) and Eq. (20) we find numerically that the instability
band is located on the interval σ0 ∈ (121.055◦, 180◦).
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FIG. 3: Phase advance (σQ and σB) and growth factors (γQ

and γB) for the breathing and quadrupole modes for a thin-
lens FODO quadrupole focusing channel and a fully depressed
beam.Continuous focusing model predictions for σ± are super-
imposed (dashed curves).
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