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Abstract

We present an analysis of envelope perturbations evolv-
ing in the limit of a fully space-charge depressed (zero
emittance) beam in periodic, thin-lens focusing channels.
Both periodic solenoidal and FODO quadrupole focusing
channels are analyzed. The phase advance and growth rate
of norma mode perturbations are analytically calculated
as afunction of the undepressed particle phase advance to
characterize the evolution of envelope perturbations.

INTRODUCTION

TheKYV envelopeequations are often empl oyed to model
the transverse evolution of the envelope of beam particles
in intense beam transport channelg[1]. For periodic focus-
ing channels, there have been no fully anaytica studies
of perturbations in the beam envelope evolving about the
matched beam envelope. Here we analytically calculate
properties of small-amplitude elliptical envelope perturba-
tionsin the limit of full space-charge depression for severa
periodic thin-lenstransport channels. Because thethin-lens
model provides a reasonable approximation to the focusing
effects of more realistic applied focusing elements, results
derived provide a guide to the properties of envelope per-
turbations associated with space-charge-dominated beams.

ENVELOPE MODEL

The KV envelope equations for a fully depresed coast-
ing beam with elliptical edge radii r, = 2/(22?),r, =
2./ (y?) digned along thetransverse x and y axesare[2, 3]

" i(s)ri(s O
)+ - 0

where j rangesover z and y, () is the dimensionless beam
perveance, and s is the axial coordinate. The equations (1)
apply directly to a beam in a quadrupole focusing channel
with k, = —&,, but for solenoidal focusing one has to
assume zero beam canonical angular momentumwith k , =
ky and interpret all results in a rotating Larmor frame{2,
App. A]. The equations can be written in terms of scaled
sum and difference coordinates R + = (1, £ 1,)/(2v/2Q)
as

2R'/(s) + 2k4(s)Ry(s) — R0) 0,

2R"(s) + 2k4(s)R_(s) =0

(24)
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for solenoidal focusing, and
/! 1
2R(s) + 2K.(s)R—(s) — ) 0,
2R (s) + 2k (s)R4(s) =0
for quadrupole focusing. In free drift regions « ,(s) =
ky(s) = 0, and the equations can be integrated by using
constancy of envelope Hamiltonian

(2b)

R}(s) — In Ry(s) = const (3)
toyield[2]
2 2
RiO) _ Loy ) ocon | e pr 0
In Ri(s) R2(0) {erﬁ Ylerfi R, (0)+ TR0 | [
(49)
R_(s) = R_(0) + sR"(0), (4b)

whereerfi(z) = erf(iz) /i isthe imaginary error function.
Without loss of generaity[2, Sec. Il E], we assume that
thelength of thefreedrift interval between the two adjacent
thin lensesis 2 asin Fig. 1. By symmetry we need only to
consider the envelope evolution of the beam between two
neighboring lenses only. We take thefirst lensto be at axial
location s = —1 and the second oneto beat s = 1. We
aso assume that in alternating gradient channel the second
lens (at s = 1) isfocusing in z. Then for both thin lens
solenoids and quadrupoleswe take near s = 1
Ke(8) = %6(5 - 1), (5)
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FIG. 1. Matched beam envelopes R+ (s) and transport lattice for
(a) solenoid, and (b) FODO quadrupole thin-lens channels.
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where f = const is the thin lens focal length and 6(s) is
the Dirac delta-function. The focal length f can be related
to the undepressed particle phase advance over one lattice
period o as[2, Sec. |1 D]

sin 20 ©)

_ |2sin* %, solenoidal focusing,
2

1_
! quadrupole focusing.

We analyze the perturbations of the envel ope coordinate
vector R(s) = (Ry(s), R)(s),((s)R_(s),(s) R (5))
from the mid-drift at s = 0 to the next mid-drift at s = 2.
Here, ((s) = 1 when the next lensto be traversed is focus-
ing, and {(s) = —1 when the next lensis defocusing.

PERTURBATIVE ANALYSIS

To analyze the first-order perturbations in the coordi-
nate vector R(s) we compute the Jacobian matrix M (0, 2)
where M(si|s2) = OR(s2)/0R(s1) and derivatives are
evaluated for a matched envelope. Since M(0|2) is sim-
plectic, then the first-order perturbations are stable if and
only if al eigenvaluesof M lie on the unit circle |z| = 1.

In calculating M (0|2), we henceforth denote F (s £0) =
lims_,+0 F(s + 9) to represent the discontinuous action of
the thin lenses on the beam envel ope functions. To exploit
lattice symmetries, we split the interval (0,2) into three
parts (0,1 —0), (1 —0,140) and (140, 2), and calculate
M(0,2) asM(0]2) = M(1+40|2)M(1—-0|1+0)M(0|1 —
0). By symmetry, M(1 + 0]|2) = M(0] — 1+ 0) 1. Thus,

M(0[2) = My(=1+0)"'"M;M;(1-0), (7)

where M, = M(1 — 0|1 4 0) is the “singular Jacobian”
associated with the thin lens focusing kick, and M ¢(s) =
M(0[s) for |s| < 1 isthe “free drift Jacobian” associated
with the half-drift.

To evaluate M, we consider the action of the thin lens
according to Egs. (2) and (5). We obtain

O O =

for solenoidal and quadrupole channels respectively.

To evaluate M;(s), the free expansion solutions in
Egs. (4) and the matched beam symmetry condition
R'.(0) = 0 are employed to eval uate Jacobian elements:

B8 9R(0)R(5) 0 0
_ s R4(0)
Ms(s) = | Tmmome me 20 (9
0 0 1s
0 0 01

To complete the evaluation of M (1 — 0), wefind rela-
tions of the elementsto o by deriving eguations connect-
ing Ry(1 -0) = R(1), R,(1-0), and R(0) to these
quantities for the matched beam envelope. By symmetry,
for a periodic, matched envelope

R\ (1-0)=-R_(1+0), (10)
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For solenoids, Egs. (2a) and (5) can be integrated once
about s = 1 to obtain

Ri(1+0) = R\(1-0) — LR4(1).

Combining these constraints with the matching conditions
(20), we get

R(1-0) = 3 Ry(1). (11)
Similarly, using Egs. (2b) and (5) for aternating gradient
focusing and matched beam symmetries (10), we obtain

RL(1=0) = R (1)

The solenoidal and quadrupole matching conditions in
Eqg. (12) for R, can be expressed as

(12)

kR, (1) = 2R/ (1 - 0), (13)
% =1 —cos oy, solenoidal focusing,

here k =
where {# = (1 —cosop), quadrupolefocusing.

[—=

Applying Egs.(3) between s = 0 and s = 1 — 0 with the
matched beam condition R/, (0) = 0 leadsto

Ry(1) = Ry(0)e™+ 070, (14)
Using Egs. (13) and (14) in Eq. (4) then yields
e = 2y/me FEO-O R (1 — 0)erfi R (1 —0).  (15)
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FIG. 2: Phase advances (o+) and growth factors (v+) for the
breathing and quadrupole modes for a thin-lens solenoidal focus-
ing channel and a fully depressed beam. Continuous focusing
model predictions for o+ are superimposed (dashed curves).
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Equations (13)—(15) provide the needed constraints to
relate the elements of M (1 — 0) to 0. Elements of
M (—1+0) can be cal culated from these constraints using
the matched beam symmetries

Ri(-1)=Ry(1),  R\(-140)=-R\(1-0). (16)
|
[ Ry(—1)+ R/ (—1+0)
ML (o) = | R 2RAOR 140
+( | ) 1 R,(0)
| 2R (OR(D Ri(—1)
_ cosog — 4RZ (1 — 0) cos® (%)
_Rg(fo) cos®(Z)[1 — cos oo + 4R’? (1 — 0)
. cos 0p 1+ cosoo
M-(02) = |—1—cosgg  cosoo } )

M(0]2) is of block diagona form with M(0|2)

For solenoidal focusing Ry are uncoupled, and

[M+(()0|2) M,(EO\Q)}’ where M (0]2) are 2 x 2 symplectic

matrices that can be independently analyzed for the stabil-
ity of perturbations. We compute M 4 (0]2) from Eq. (7):

-1 R (1)—R/ (1-0)
{ L (1)] { - R0-0) 2340}){1%(%51—0)]
—= _ 1 +
s IR0 R(D) R(D)

2280 _9R2(1 - 0)) 17)

W)R2(1 - 0)

cos®(%)] cosop — 4(:052( s

|

Eigenvalues A ;. of the matricesM 4 (0]2) are
At = cosog — 4R7(1-0) cos® (L) = 26 cos(L),

-\/[1—2Rf(1—0)] [sm (%) +2R2(1-0) cos?(%)]

= cosog t isinoyg.

A

(18)
Real-valued mode phase advances o+ and growth factors
~+ per lattice period satisfy A+ = ~yref+. With proper
branch selection[2] we get

o4 = arg A; with + signin Eq. (18),

0— =00,

(19)

and growth factors as

1

’Y+={
Y

stabl e

_ =1

These solutions are plotted in Fig. 2 as a function of oy.
The extent of the band of instability (y+ # 1) in oy can be
calculated from -y, directly as

2 1
arccos | 1—1/ " erfi — |« | ~[116.715°, 180°].
e V2

The stability of quadrupole focusing can be investigated
analogously except that we must work with thefull 4 x 4 Ja-
cobian matrix M(0]2). After multiplying out the matrices
in Eq. (7) and calculating the eigenvalues using the con-
straintsin Egs. (12)—15) yields

oo €

[1—1k] [k + 8R2(1-0)], (20)

where w = +/[1 — Lk][1 - Lk — SR2(1-0)] and k is
given by Eq. (13). These eigenvalues can be employed
to calculate phase advances (o and o) and growth fac-
tors (7, and +,,) of the breathing and quadrupole modes as
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\/2 [cosog — 4R2(1-0) cos2(%)}2— 1, unstable,

Opo = 2argX and v, = |A?| (seeFig. 3). Using Egs.
(15) and Eq. (20) we find numerically that the instability
band is located on the interval oy € (121.055°, 180°).
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FIG. 3: Phase advance (oo and o) and growth factors (vo
and ) for the breathing and quadrupole modes for a thin-
lens FODO quadrupole focusing channel and a fully depressed
beam.Continuous focusing model predictions for o+ are super-
imposed (dashed curves).



