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Abstract

This paper studies dipolar and quadrupolar decoherence
of a bunch in presence of space charge. The centroid of
a bunch displaced transversely or longitudinally decoheres
due to nonlinearities that cause phase space filamentation
and mixing. Here we show that space charge can inhibit
decoherence and keep the beam centroid oscillations un-
damped over long times. This feature complicates the de-
tection of echoes for diagnostics purposes. An echo re-
quires in fact a fully decohered beam to show up as a co-
herent signal at later times than the excitations.
Results are qualitatively compared with experiments in the
GSI synchrotron SIS.

INTRODUCTION

The question of longitudinal decoherence of the collec-
tive motion of a bunch of charged particles in presence of
nonlinearities due to a sinusoidal bucket and space charge
is addressed in this paper.
Experimental observations are described in Section II. Sec-
tion III shows a simplified calculation of decoherence due
to nonlinearity and space charge. Semi-analytical expres-
sions for the evolution of the bunch longitudinal centroid
and rms-size (first two moments of the detailed longitu-
dinal particle distribution, on which alone we assume the
space charge forces to depend) with the non-linearity alone
are presented in Section IV. These expressions can then be
used as starting point of a recursive numerical procedure,
which recalculates the single particle equation of motion
with space charge and thus converges to the final profile
of longitudinal centroid and rms-size evolution with space
charge included after a few iterations.

OBSERVATION OF UNDAMPED
CENTROID MOTION IN SIS

Longitudinal bunched beam dipole oscillations are ob-
served during SIS operation, if there is an energy error
between the injected beam from the UNILAC and the rf
frequency setting in SIS. For low beam intensities the in-
duced bunch center dipole oscillation is damped before the
start of the acceleration ramp. For high beam intensities or
electron cooled beams the dipole oscillation survive during
ramping. For example, the waterfall plot in Fig. 1 shows
the persistent dipole oscillation for 0.5 × 1010 C6+ ions
per bunch with an estimated equivalent coasting beam mo-
mentum spread ∆p/p|FWHM ∼ 5 × 10−4. The estimated
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frequency error is ∆f/f ∼ 1 × 10−3 (corresponding to
≈ 2σz0 kick in the longitudinal phase space)

Figure 1: Observed persistent dipole oscillations of four
bunches in SIS as function of time.

DECOHERENCE WITH SPACE CHARGE

A bunch with an initial longitudinally offset from the
bucket center will perform synchrotron oscillations around
it. If all particles have the same synchrotron tune, the cen-
troid motion is expected to be harmonic. However, if the
beam contains a spread of tunes, the motion will decohere
since the individual synchrotron phases of the particles dis-
perse. As the longitudinal phase space of the beam spreads
to an annulus, the observed centroid of the beam will show
a decaying oscillation and its rms-size will grow. Space
charge can inhibit the centroid decoherence and thus keep
the oscillations undamped by local compensation of the
synchrotron detuning with amplitude.
The synchrotron frequency spread as a function of the sin-
gle particle oscillation amplitude φ̂ in a RF bucket is (see
e.g. Ref. [1])

ωs(φ̂) =
πωs(0)

2K(sin2 φ̂
2 )

≈ ωs(0)

(
1 − φ̂2

16

)
, (1)

Assuming a parabolic bunch form, space charge induces
a shift ∆ω of the incoherent frequency distribution. This
shift can be related to the space charge parameter [2] Σ =
2KLzm/ε2L (longitudinal emittance ε2

L and perveance KL,
bunch half-length zm)

∆ω

ω0
=

1
4
Σ (2)

Damping of dipole modes is only possible if the coherent
dipole frequency Ω = ωs(φ̄) (amplitude of the dipole mode
φ̄) that is not affected by space charge, lies within the inco-
herent frequency distribution. Persistent dipole oscillations
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after kicking a beam to a finite phase φ̄, are possible if space
charge shifts the frequency distribution towards sufficiently
low frequencies. Below transition energy Ω > ω0 − ∆ω
yields the criterion

∆ω

ω0
>

φ̄2

16
⇒ Σ >

φ̄2

4
. (3)

This criterion is consistent with the SIS observation
(Σ ≈0.4). A similar condition was independently obtained
in Ref. [3]. It is interesting to note, that above transition en-
ergy or for negative Σ (inductive impedance) one obtains

|Σ| >
1
4

(
φ̂2

m − φ̄2
)

(4)

with the parabolic bunch half-length φ̂2
m.

ITERATIVE PROCEDURE

We can express the centroid and rms-size evolutions
through the integrals:

z̄(t) =
∫
�2 z(ẑ, δ̂, z̄, σz)ρ(ẑ, δ̂)dẑdδ̂

σz(t) =
∫
�2 z2(ẑ, δ̂, z̄, σz)ρ(ẑ, δ̂)dẑdδ̂ − z̄2(t)

(5)

where ρ(ẑ, δ̂) is the initial particle distribu-
tion in the longitudinal phase space, ρ(ẑ, δ̂) =

1
2πσz0σδ0

exp
[
− 1

2

(
(ẑ−z0)

2

σ2
z0

+ δ̂2

σ2
δ0

)]
, and z(ẑ, δ̂, z̄, σz) is

the solution of the single particle equations of motion in
presence of space charge


ż = −ηcδ

δ̇ = sgn(η)
eVm

p02πR0
sin
(ωrfz

c

)
+ Fsc(z − z̄, σz)

(6)
The problem consists of a very complicated integro-
differential set of equations having z̄(t) and σz(t) as un-
knowns with initial conditions z̄(t = 0) = z0 and σz(t =
0) = σz0. We solve it by iterations following the procedure
that we describe here below. As first step, we neglect space
charge. Using now Eqs. (5) with the solution of the equa-
tion of motion (6) in nonlinear regime and without driving
term leads us to the expressions for the bunch centroid and
rms-size evolutions in absence of space charge,

z̄(t) = − 1
2πσz0σδ0

Re


 i · eiωst√
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1
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(7)
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(8)
where C(ẑ) = 1 − cos

(ωrf z
c

)
.

Table 1: SIS parameters used in this study.

variable symbol value
Circumference 2πR0 216 m
Revolution frequency ω0 8.7 × 106 rad/s
Relativistic gamma γ 3.129
Chamber size a, b 10 × σx,y

Bunch population Nb 1010 C6+
Rms bunch length σz0 2 m
Rms energy spread σδ0 5.9 × 10−4

Slip factor η −0.0665
Synchrotron tune Qs0 6.8 × 10−4

Initial kick amplitude z0 4 m
Maximum voltage Vm 32 kV
Harmonic number h 4

Figures 2 and 3 (blue lines) show longitudinal centroid
and rms-size evolutions as resulting from the expressions
(7) and (8) for SIS parameters in Table I. Due to the sinu-
soidal bucket the centroid oscillation, which would have
survived forever undamped in the case of purely linear
restoring force, significantly decoheres after a few syn-
chrotron periods. At the same time the bunch longitudi-
nal rms-size grows and tends to level off at the asymptotic
value

σz(t → ∞) =

√
σ2

z0 +
z2
0

2
,

as results from Eq. (8) when taking its limit as t → ∞.
Our iterative procedure to evaluate the effect of space
charge simply consists in using these evolutions back in
the single particle equation of motion, find new solutions
for a set of initial conditions and thus recalculate the inte-
grals (5). After only two iterations the method converges
to the evolutions depicted in Figs. 2 and 3 (red lines). If we
evaluate the Σ factor for the parameters in Table I, we eas-
ily find out that it amounts to 0.2 compared to a kick phase
of about π/7. Therefore we expect a similar evolution to
that of the experiment described in Sec. I. As predicted by
the above criterion (3), the damping of the centroid oscil-
lation is no longer to be observed. The bunch longitudinal
rms-size still increases even if its growth seems to stop at a
lower level than without space charge.

The effect of space charge on longitudinal quadrupole
oscillations can also be studied with our method. To excite
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Figure 2: Decoherence of the centroid motion for a longi-
tudinally displaced bunch due to the sinusoidal bucket non-
linearity with (red) and without (blue) space charge effects.
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Figure 3: Bunch rms-size evolution for a longitudinally dis-
placed bunch due to the sinusoidal bucket nonlinearity with
(red) and without (blue) space charge effects.

a pure quadrupole oscillation, we only need to unmatch the
bunch and set the initial longitudinal offset of the bunch,
z0, to 0.
In this case, no centroid oscillation will be observed. The
σz will still evolve according to Eq. (8), where this time
it will be z̄(t) = 0 and, because of the unmatched situ-
ation, σ2

z0 on the first line must be replaced by σ2
z0/2 +

η2c2σ2
δ0/(2ω2

s0). The evolution of the bunch rms-size is
depicted in Fig. 4 (blue line). We have chosen to simulate
an SIS bunch with a momentum spread which is scaled by
a factor 0.8 with respect to the value reported in the Table I
(matched value). A smaller momentum spread than the the
matched value would cause the bunch to shrink initially and
then oscillate around the new σ

(match)
z = σδ0|η|c/ωs =

0.8σz0 if no longitudinal detuning were included in the
analysis. It is clear that, owing to the bucket nonlinear-
ity, decoherence appears in the quadrupole oscillation, too.
The asymptotic value of the bunch rms-size, which is even-
tually reached after the oscillation at twice the synchrotron

frequency has fully died out, will be:

σz(t → ∞) =

√
σ2
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2
+
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Figure 4: Bunch rms-size evolution for a longitudinally un-
matched bunch due to the sinusoidal bucket nonlinearity
with (red) and without (blue) space charge effects.

Just like in the case of the pure dipole oscillation, space
charge causes the quadrupole oscillation to be undamped.
Figure 4 (red line) shows the persistent oscillation as eval-
uated with the iteration method.

To cross-check the validity of the obtained analytical ex-
pressions as well as of the iterative procedure which we
have used above, we have also carried out macroparticle
simulations using the HEADTAIL code [4] and Vlasov sim-
ulations. The results in terms of bunch centroid and rms-
size evolution agree very well with the iterative procedure.

CONCLUSIONS

Below transition even relatively low space charge su-
presses the decoherence of longitudinal dipole oscillations.
Therefore, in contrast to the recently described collective
coasting beam echoes [5], collective bunched beam echoes
might be difficult to observe.
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