
A NEW REAL-TIME OPERATING SYSTEM AND PYTHON SCRIPTING
ON ALADDIN*

D.E. Eisert#, R.A. Bosch, K.D. Jacobs, K.J. Kleman, J.P. Stott, Synchrotron Radiation Center,
University of Wisconsin-Madison, 3731 Schneider Drive, Stoughton, WI 53589-3097, USA

Abstract
We are in the process of upgrading the VME processors

on the Aladdin electron-storage-ring control system. The
last major redesign of the control system occurred in the
mid 1980�s. At that time we converted to VME
microcomputers and VAX/VMS workstations
communicating via Ethernet. This is the second upgrade
since then of the VME processor. As upgrades of the
Motorola 680x0 processor are no longer available we
have decided to switch to the Intel Pentium III. This
change allowed us to reconsider our use of the rather
primitive µC/OS kernel and implement a commercial real-
time OS. We decided to use QNX primarily as it was a
good match to our existing software and was zero cost. In
addition to upgrading the CPUs we have also added a new
scripting language to our main control application. We
used SWIG (Simplified Wrapper and Interface Generator)
to create wrapper code for the scripting software. SWIG
can create wrapper code for many scripting languages so
our initial choice of a scripting language was not critical.
We decided to start by using Python due to the many
available add-on libraries and the apparent ability to
support larger projects. We will discuss our evaluation
process and the challenges we encountered.

INTRODUCTION
Our present control system utilizes several generic

desktop PCs running Windows 2000, eight VME systems
running QNX [1] and ten dedicated power-supply
controllers running µC/OS [2,3]. The network is primarily
100 Mbps switched Ethernet with a 1 Gbps over copper
link between the storage ring and the control room. Our
new VME processor boards (VMIC 7750) use a 733
MHz Pentium III processor and have 64 MB of Compact
Flash storage, 64 MB of SODIMM RAM and dual 100
Mbps Ethernet ports. These boards replaced processor
boards based on the Motorola 68030. The dedicated
power-supply controllers are built into our dipole and
quadrupole power supplies. They were updated with new
VME processors based on the Motorola MC68360 in
2000. These controllers are actually the oldest processors
in our control system.

The size of our control system is smaller than many
facilities [4]. As a result we no longer have a controls
group. Several years ago the controls group was trimmed
from three staff members down to one. The
responsibilities were also reduced and no longer include
facility computing and network support. The operations

group supplies staff for cabling and transition panel work
as needed by the control system.

REAL-TIME OPERATING SYSTEMS
For the last ten years we have been using µC/OS for

simple task management. It doesn�t include any support
for networking or memory management. We wrote our
own networking software and simple heap management
software. Typically our budget is consumed by hardware
purchases so we are forced to write our own software or
find an open source solution.

While investigating many possible real-time operating
systems, we discovered that QNX had recently changed
its licensing policy. The software was now offered free
for non-commercial use. We verified with their sales
department that this new licensing policy allowed us to
use QNX free of charge.

Some possible operating system choices included
µC/OS, RTEMS, several versions of real-time Linux and
QNX. µC/OS has served us well but we desired a more
complete package. RTEMS appeared to be an
improvement over µC/OS but its support is not as strong
as real-time Linux.

The choice was narrowed down between the various
real-time Linux systems and QNX. QNX has many
advantages for us:
• Drivers are separate from the kernel and they run

in their own protected address space. Rebuilding
the kernel is not required for every driver change.

• Drivers can be started and stopped independently
from the kernel.

• QNX�s built-in message passing functions closely
matched our existing software�s need for
interprocess communication.

• QNX has a cleaner implementation of its
networking software. Linux switches out of its
real-time kernel for network communication.

• QNX has a much shorter learning curve for people
unfamiliar with Linux. There is no need to learn
how to build the kernel or how to write kernel
drivers.

PROCESSOR SELECTION
With the availability of no cost real-time OS�s the

decision of processor architecture became less important.
The decision could now be made based on cost vs.
performance. We requested bids for a VME processor
board with a Pentium III, Celeron or Motorola MPC750
processor. We also specified some form of on-board flash
memory, 100 Mb Ethernet and a PMC expansion site.

* Work supported by the U.S. National Science Foundation under
Award No. DMR-0084402.
#deisert@src.wisc.edu

0-7803-7739-9 ©2003 IEEE 2373

Proceedings of the 2003 Particle Accelerator Conference

Unfortunately it seems that many vendors don�t like to
respond to the generic bids required by our purchasing
department. But we did receive a reasonable selection of
low bidders with prices that varied by less than about
10%. The VMIC board with the Pentium III clearly had
the most computing power. Other benefits included
removable/upgradeable RAM and Compact Flash, two
Ethernet controllers and available on-board 32-bit timers.

One concern is that the heat generated by the Pentium
III is greater than that generated by the PowerPC
processor. VMIC claimed that with proper cooling the
Pentium III processor would not have problems. To test
this a VMIC board was initially configured to run
Windows 2000. A CPU thermal stressing program was
downloaded from the Internet. The processor temperature
climbed to 50 °C in about 5 minutes. The BIOS was
configured to throttle down the processor by 50% at that
temperature. In the throttled down state it would cool off
and then the BIOS would return the processor to full
speed. This cycle would continue indefinitely.
Unfortunately the early BIOS must have been configured
to set a flag if it reached the throttle down temperature.
When attempting to reboot after this test, the board
indicated a problem by flashing a LED. VMIC�s
documentation instructed that the board must be returned
to the factory. The service record from the factory only
indicated that the BIOS firmware had been updated to fix
the flashing LED. This would not be suitable for number
crunching but it probably does not represent a problem for
real-time control applications.

CODE DEVELOPMENT
The first task in porting our software was writing a

driver for the PCI-VME bus interface (Tundra Universe
II). At that time VMIC had not written the driver for the
latest version of QNX. In fact they suggested they might
be interested in supplying the prior version�s source code
to us if we would update it for them. We declined since
the source code was available for a Linux driver. Creating
the QNX version did not prove to be an overly ambitious
project.

Most OS driver protocols typically require procedures
that are similar to the standard file processing functions.
These procedure calls allow only a limited number of
parameters to be passed. Our original drivers assume that
the interface would allow a significant number of
parameters to be passed with the function calls. Initially
we thought of trying to bypass the built in driver support
library and communicate via a lower level raw message
format. But one of the many technical articles available
on QNX�s web site detailed an easy method to extend the
driver call to pass the parameters we required.

One of the unique features of our drivers is their ability
to be restarted on the fly. When the new driver is started,
it requests all of the information needed to restart the
driver from the old process. The old driver then exits and
the new driver is able to initialize without modifying the
contents of the board�s registers.

We were concerned that the architecture change would
cause byte order problems. The Motorola and Intel
processors use different integer byte ordering. The VMIC
board has on-board hardware to automatically correct byte
order problems. As a result, all but one of our drivers were
ported without any special consideration to byte order.
The driver that had difficulty was a stepping motor driver
that required four byte integers to be written to a byte
wide register.

Polling the analog input boards requires several percent
of the CPU. This may seem curious at first since the task
does not require much processing. Upon further
investigation it appears to be caused by bus throughput
limitations. Our older 16 bit VME bus can only transfer
data at about 1.2 MB per second.

INSTALLATION
The VME processor boards were upgraded over a nine-

month period. During that time both the new and old
processors were used together in the control system.
Normally the processor would be changed during the
beginning of a ring development period coinciding with
other work on the ring. After initial testing the system
would be monitored for the rest of the development
period. If no problems were detected, it would remain on
the ring during the user period.

One of the VME systems developed problems after
installation. Approximately once a week the system will
stop servicing interrupt requests on the VME bus. The
system is nearly identical to several other systems that do
not have this problem. So it may be a very subtle software
bug or hardware related problem. The problem is too
infrequent to isolate during development periods. The
work around is to monitor interrupts in the PCI-VME
Tundra Universe driver. When a lockup occurs, a shell
script is spawned to kill all of the affected drivers. The
drivers are then restarted within in about a second. This is
done without losing any of the stored beam. A small delay
may occur in some of our feedback loops but it should be
nearly impossible for the users to detect. We hope to have
this problem fixed soon but the ability of QNX to restart
drivers without rebooting is quite impressive.

CONTROL SOFTWARE
The primary program used to operate our facility is

called the Page Program. The program is very easy to use
and its tabular appearance allows a significant amount of
information to be neatly displayed on the screen. Much of
its basic look and feel has not changed in over a decade.
Operators like the consistency of the user interface. But
for many years there have been requests to improve its
primitive built-in scripting language. The amount of work
involved seemed considerable due to the program�s
internal dependence on its own scripting language.

We did have another method to develop programs
without having to write traditional software. In the mid
1990�s LabView had been extended to allow access to the
control system. LabView could create great looking GUI

2374

Proceedings of the 2003 Particle Accelerator Conference

screens and had built in plotting and data analysis. Our
beamlines had been using it for years but most staff are
reluctant to use it.

THE TOOLS
There are several open source scripting languages to

choose from. Tcl/Tk seems to be very popular but the
syntax is very similar to shell scripts. Python�s syntax
looked appealing due to its greater similarities to a
traditional programming language [5]. It also appeared to
have more libraries, including matrix libraries.

The initial choice of a scripting language soon became
irrelevant. SWIG claims to allow applications to be
written for most of the popular scripting languages with
only minor changes [6]. Being a small facility we only
wanted to support one language. SWIG allowed us to
initially pick any language we wanted without the risk of
making the wrong choice.

EMBEDDING THE LANGUAGE
The first step was to write an extension for Python

using SWIG. After only a couple of days most of the
common operations were available, such as reading and
writing device settings and device database queries. The
software was installed on one workstation and a notice
was e-mailed to a small group of staff members. The
response was immediate and very enthusiastic. Several
staff members dropped their current projects and started
experimenting with the new software. Another week or
two was spent testing, documenting and adding new
functions to this extension. The DLL extension was also
used to enable control system access for IGOR and
MATLAB.

The next step was to replace the primitive scripting in
the Page Program. This proved to be quite simple but time
consuming due to the number of functions that were
created for Python. Redirecting Python error messages
posed a slight difficulty. Python documentation explains
the procedure but the task could be made a bit more
straightforward. It is also possible to create multiple
threads in the program all running Python scripts. It was
decided to limit the program to only one thread running a
Python script due to the possible confusion it could create
for the operators.

The final step was to translate all of our existing scripts
into Python. The original scripting language was modeled
after VAX/VMS�s Digital Command Language. It allowed
command options to be placed anywhere in the command
string. In only a few hours a Python script was written
that did the translation. More than 100 scripts were
translated to Python in a single afternoon.

IMPLEMENTATION
Surprisingly most of the initial scripts that were written

performed operations that were already available in
existing software. But eventually these scripts became
building blocks for larger measurement operations.

Scripts were written to change lattices, apply quadrupole
corrections and start orbit feedback and undulator
compensations with the click of a button. Many scripts are
so complex that they require several hours to execute.
Scripts have also been used to create feed forward control
loops for newly installed hardware.

The original work on creating a Python extension
proved to be very useful. Initially it was written only to
experiment with the scripting language. But it now allows
us to spawn Python scripts that are independent from our
main control program. It has also been useful for
developing new scripts during user periods. Access to the
control system is prohibited from most PCs therefore
initial debugging can be performed on them without
affecting the ring. Access control will be expanded in the
future to allow limited real-time access to the control
system from these systems.

Excessive reliance on scripting for normal operation
could create some problems. Operators could become
complacent and would be less likely to notice problems
unless the script or other monitoring software detects
them. Operators could lose the ability to recover from
problems if a routine configuration script fails. Operators
need to review the procedures frequently and stay
informed about changes to maintain their skills.

CONCLUSION
Replacing our older VME processor boards has brought

increased reliability and future expandability. Some staff
were disappointed that they did not detect any change
after the upgrade. Actually the primary goal of the project
was to implement the change without disruption. The
initial software was created to be identical to the old
system while creating a base of expansion for years to
come.

The new scripting software appears to be serving the
needs of the accelerator development group. This clearly
demonstrates that ease of use is very important to the
acceptance of a tool. An added benefit is the ability to
distribute software related work across more individuals.
The focus of the controls related work can now be more
concentrated on supplying tools for the operation and
accelerator development groups rather than end user
applications.

REFERENCES
[1] http://www.qnx.com
[2] Jean J. Labrosse, µC/OS The Real-Time Kernel,

R&D Publications, (1992).
[3] D. E. Eisert, Fermilab Report CONF-96/069, 851

(1996).
[4] J. P. Stott and D. E. Eisert, Nucl. Instr. and Meth.

A293, 107 (1990).
[5] http://www.python.com
[6] http://www.swig.org

2375

Proceedings of the 2003 Particle Accelerator Conference

