
LINEAR MODEL FOR NON-ISOSCELES ABSORBERS

J. Scott Berg∗, Brookhaven National Laboratory, Upton, NY 11973, USA

Abstract

Previous analyses have assumed that wedge absorbers
are triangularly shaped with equal angles for the two faces.
In this case, to linear order, the energy loss depends only on
the position in the direction of the face tilt, and is indepen-
dent of the incoming angle. One can instead construct an
absorber with entrance and exit faces facing rather general
directions. In this case, the energy loss can depend on both
the position and the angle of the particle in question. This
paper demonstrates that and computes the effect to linear
order.

INTRODUCTION

Ionization cooling can be achieved in the transverse di-
rection with a straight cooling channel. However, in the
longitudinal direction, one generally gets heating. Energy
straggling leads to further heating in the longitudinal plane.
To achieve 6-D cooling, one must couple the transverse
motion with longitudinal motion. One method to achieve
this is to use a triangular cross-section absorber in a loca-
tion with dispersion. Particles with higher energy then go
through a larger length of absorber and lose more energy,
thus reducing the energy spread. Unfortunately, this occurs
at the cost of an increase in transverse beam size [1]. This
process is often referred to as “emittance exchange.”

Existing computations have only considered triangular
wedges with equal face tilts. The entrance and exit faces of
the absorber can be tilted rather generally. This will give an
energy loss dependence on transverse coordinates which is
different from what occurs when the face tilts are equal and
in the same plane. This paper calculates the linear transfer
matrix for such a wedge absorber.

First, the path length in the absorber is calculated for
general face angles. The computation is first done in the
case where the faces are tilted in the same plane, to give
a more intuitive picture of what is going on, followed by
formulas for more general face tilts. This calculation is
then used to find the transfer matrix through the absorber.
Finally, possible uses of more general face angles are dis-
cussed.

GEOMETRIC LENGTH CALCULATION

The energy loss (ignoring stochastic effects) in the ab-
sorber is proportional to the distance that the particle trav-
els through the absorber. Thus, to calculate the effect of the
absorber, we will calculate the length of the particle trajec-
tory that is inside the absorber. We further assume that the
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Figure 1: Planar absorber geometry.

particle trajectory is straight: i.e., there are no electromag-
netic fields acting on the particle. First, we compute a case
where the plane in which the absorber faces are tilted from
vertical is the same for both cases. This becomes a one-
dimensional problem, and helps give an understanding of
what is going on. We then do the computation for a more
general case.

Fig. 1 gives the parameters for the one-dimensional
problem. The length of the path inside the absorber is

l =
(

L

tan θ0 + tan θ1
+ x

)
cos η sin(θ0 + θ1)

cos(η − θ0) cos(η + θ1)
,

(1)
whereL = z1 + z2. To linear order inx andη, this is

l = L + x(tan θ0 + tan θ1) + ηL(tan θ1 − tan θ0) (2)

If θ0 = θ1 (i.e., the absorber cross-section is an isosceles
triangle), to linear order, the path length (and thus the en-
ergy loss) does not depend on the incoming particle angle,
but does depend on the transverse position. This is the situ-
ation that has been analyzed in the past. On the other hand,
if θ0 = −θ1 (i.e., the faces are parallel but the absorber
is tilted), the path length does not depend on the incom-
ing particle position, but it does depend on the incoming
particle angle.

In the more general situation, we describe the absorber
by its entrance and exit planes. We describe these planes
as passing through a pointpi and having a unit normalui,
wherei = 0 for the entrance plane andi = 1 for the exit
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plane. The particle trajectory is described as line passing
through a pointx0 with a unit tangent vectort. We can
calculate the path length within the absorber in terms of
these coordinates and vectors as

l =
(p1 − x0) · u1

t · u1
− (p0 − x0) · u0

t · u0
(3)

We can compute this length to linear order. The coordinates
of these vectors are (see Fig. 1):

x0 = (x, y, 0) (4)

t =


px

p
,
py

p
,

√
p2 − p2

x − p2
y

p


 (5)

p0 = (0, 0,−z0) (6)

p1 = (0, 0, z1) (7)

u0 = (sin θ0 cos φ0, sin θ0 sin φ0, cos θ0) (8)

u1 = (− sin θ1 cos φ1,− sin θ1 sin φ1, cos θ1). (9)

TRANSFER MATRIX

One can easily compute the transfer matrix to lowest or-
der in the relative energy loss in the absorber. In this case,
only the path length in the absorber matters. First, compute
the evolution of the transverse momenta, as well as the evo-
lution of the energy deviation ignoring the face angles. The
equations of motion are

dp⊥
ds

= −κ⊥p⊥
dδ

ds
= −κ‖δ (10)

κ⊥ =
1

βpc

dE

dx
κ‖ =

d

dE

(
dE

dx

)
, (11)

and their solution is

p⊥(s) = p⊥(s0)e−κ⊥(s−s0) (12)

δ(s) = δ(s0)e−κ‖(s−s0). (13)

Imagine a sequence of planes with normalu(z) and
passing through the point(0, 0, z). Using Eq. (3), the in-
tegrated path length to linear order inx = (x, y) andp⊥/p
(where the⊥ subscript refers to the transverse coordinates)
from an arbitrary point to the plane atz is a constant plus

z − x · u⊥
uz

− z
p⊥
p

· u⊥
uz

. (14)

We will parameterizeu by η according to

u =
u0 sin(ξ − η) + u1 sin η

sin ξ
u0 · u1 = cos ξ. (15)

η will vary from 0 to ξ while z varies from−z0 to z1. The
definition of the exact relationship betweenη andz will be
left to later. We then have

dl

dz
= 1 − p⊥

p
· u⊥

uz

−
(

x + z
p⊥
p

)
· uz0u⊥1 − uz1u⊥0

u2
z sin ξ

dη

dz
. (16)

Now define
dη

dz
= ku2

z (17)

for some constantk. Then

d

dz

(
u⊥
uz

)
= k

uz0u⊥1 − uz1u⊥0

sin ξ
(18)

meaning that

u⊥
uz

= k
uz0u⊥1 − uz1u⊥0

sin ξ
z + c (19)

for a constant vectorc. Applying the known boundary con-
ditions,

u⊥
uz

=
u⊥0

uz0

z1 − z

L
+

u⊥1

uz1

z + z0

L
. (20)

We can then write

dl

dz
= 1 − x

L
·
(

u⊥1

uz1
− u⊥0

uz0

)

− p⊥
p

·
[
z1u⊥0

Luz0
+

z0u⊥1

Luz1
+

2z

L

(
u⊥1

uz1
− u⊥0

uz0

)]

(21)

Now, use Eq. (12), giving

l = L − x ·
(

u⊥1

uz1
− u⊥0

uz0

)
− p⊥0

pκ⊥L
·
[

2
(

1 − e−κ⊥L

κ⊥
− z0 − z1e

−κ⊥L

) (
u⊥1

uz1
− u⊥0

uz0

)

+
(

z1u⊥0

uz0
+

z0u⊥1

uz1

)
(1 − e−κ⊥L)

]
. (22)

The change inδ is simply κ⊥l, and one can then directly
read off the matrix elements.

DISCUSSION

First of all, adjusting the absorber geometry simply to
keep the sum of the tangents of the face angles constant
will not leave the performance of a cooling channel invari-
ant, unless there happens to be no angular dispersion at the
location of the absorber. In fact, at a point where there
is both angular and positional dispersion, one may get im-
proved performance by adjusting the face angles separately.

One could even consider a lattice with only angular dis-
persion and no positional dispersion at the absorbers. This
could not be easily done in a ring (if one bends in the same
direction all the time, one tends to have nonzero positional
dispersion), but could be done in a “snaking” configura-
tion where subsequent cells bend in opposite directions,
and thus the lattice is straight over larger scales.

There are several reasons one might want to do this. First
of all, a lattice that does not form a ring allows one to adia-
batically vary lattice parameters, thus maximizing the cool-
ing performance as the beam changes. One may be espe-
cially interested in doing this for a collider to maximize the
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Figure 2: Super-FOFO lattice with bends all in same direc-
tion and isosceles wedges. Absolute value of eigenvalues
plotted versus field relative to a reference field.

luminosity one achieves. In addition, one avoids the diffi-
culties with injection and extraction.

These considerations apply to any lattice that does not
form a ring. The advantage of having only angular disper-
sion versus positional dispersion at the absorber may lie in
the effect of energy straggling. When the energy changes in
energy straggling, the betatron amplitude will change since
the closed orbit changes. Since the beta function at the
absorber is small (whereas the dispersion is not necessar-
ily), energy straggling with positional dispersion will lead
to large betatron amplitude changes relative to the beam
size. If instead there is angular dispersion at the absorber,
energy straggling leads to smaller relative betatron ampli-
tude changes due to the large angular spread at that point.
This has the potential to substantially improve the perfor-
mance of these cooling lattices. This has not been tested in
real lattices at this point.

Example

As an example, consider a “Super-FOFO” lattice [2],
modified by adding bending as in [3]. A similar lattice has
been proposed for achieving 6-D cooling, and shows excel-
lent performance [4, 5]. Fig. 2 shows the absolute value of
the eigenvalues as a function of the field strengths for stan-
dard isosceles wedges and a lattice where all bends bend in
the same direction (giving dispersion at the absorber). This
is equivalent to considering the dependence of the eigen-
values on the reference momentum. If the absolute value
of all the eigenvalue is less than 1, then the beam will be
cooled in all planes. One is able to achieve 6-D cooling
over a rather large range of reference momenta.

Figure 3 shows the eigenvalues for a tilted slab in a lat-
tice that has angular dispersion at the absorber. Note that in
this case as well, one is able to achieve 6-D cooling over a
rather large range of reference momenta. Also note that the
wedge angles are steeper than those required for the case
with conventional wedge absorbers.
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Figure 3: Super-FOFO lattice where bending in one cell is
opposite to the bending in the next, and the absorbers are
tilted slabs. Plots are as in Fig. 2.

CONCLUSIONS

The energy loss in an absorber with generally placed pla-
nar faces has been calculated to linear order in the trans-
verse coordinates. This allows one to calculate eigenval-
ues for a cooling channel with these rather general wedges.
An example was constructed where a cooling channel was
constructed with angular dispersion at the absorbers, and
parallel-face tilted absorbers were used. Linear perfor-
mance (without multiple scattering) of that cooling chan-
nel was shown to be comparable to that of a channel con-
structed with more conventional wedges. Such a chan-
nel may have multiple scattering performance that is better
than a wedge-based 6-D cooling channel.

Further work should incorporate general face orienta-
tions into simulation codes such as ICOOL [6]. One can
then simulate and optimize proposed 6-D cooling lattices
by orienting absorber faces more generally.
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