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Abstract

It is found that a charged particle can get a net energy
gain from the interaction with an electromagnetic chirped
pulse. Theoretically, the energy gain increases with the
pulse amplitude and with the relative frequency variation
in the pulse.

INTRODUCTION

Modern  high-intensity  lasers can  generate
electromagnetic (EM) pulses with the eectric field
amplitude Eq[TV/m]33.2a0/A [tm] in order of 10 TV/m
(here ag=Eq/(mecale) is the normalized peak amplitude
and A_ is the laser wavelength). However, it is not easy
for a charged particle to get a net energy gain of even 10
MeV after interaction with such laser pulses. In the laser
pulse fidd, a free charged particle experiences the
ponderomative force. In the one-dimensional (1D) case
the acceleration in front of the pulse is followed by
deceleration in the descending part of the pulse, so that
the net energy gain is zero. However, in a laser pulse of
finite transverse extension an electron can leave the pulse
before the decelerating field will compensate the acquired
energy (see, e g., recent articles [1] and references
therein). Acceleration of free electrons to MeV energy,
after interaction with a high-intensity (1;=10" W/cm?,
a=3) laser pulse in vacuum, has been observed
experimentally [2]. Free electrons can also acquire energy
from the laser fidd if they are “born” inside the pulse
(where a£0) dueto tunndling ionisation [3].

In this article we show that a charged particle can get a
net energy gain after interaction with an electromagnetic
pulse with the carrier frequency changing from head to
tail (chirped pulse) even in the one-dimensional case.
Presently, high-intensity (1,[110™ W/cm?) short chirped
laser pulses are available [4]. A chirped pulse can be
generated as a result of reflection from a relativigtic
mirror when the gamma factor, )4, of the mirror changes
during reflection. Computer simulations showed that )4, of
an eectron mirror produced by a high-intensity
femtosecond laser pulse focused on athin solid target can
increase from y, [l to the value of [110°. So, the carrier
frequency of the reflected EM pulse w=4y’w, (Where
A isthe incidence frequency) will increase considerably.
The plasma electron density spike in a nonlinear laser
wakefield can also serve as a reativistic mirror with
changing velocity if the group velocity of the laser pulse,
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which is equal to the wake phase velocity, changes. This
can take place, for example, in a non-uniform plasma.
Below we consider the interaction of a charged particle
(here-an €electron) with a one-dimensional chirped EM
pulse. This approach is valid when the particle remains
close enough to the pulse axis, so that we can neglect the
change of the EM field in the transverse direction.

DYNAMICSOFAN ELECTRON IN AN
ELECTROMAGNETIC FIELD
Suppose that the EM pulse propagates in the Z direction

and is linearly polarized in the x direction. For a one-
dimensional chirped pulse we can write

Ex=Eo(cod a({){], {EZ—ct, B=eB,=¢/E,, where «[J) is
the carrier frequency and B is the magnetic field of the
pulse. In the pulse field (E(E,0,0), B(0,B,=E,0)), we
have for the electron’s momentum components:

D)
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3

dp,/dr =-(1- B,)E,,
dp,/dr =0,
dp,/dr = -5,E,.

Here p=P/mc and p=v/ic are the dimensionless
momentum and vel ocity, 7=t isthe dimensionlesstime,
wy=af0), the spatial variables are normalized to ¢/« and
the electric and magnetic fields are, as usual, normalized
to mecay/e. According to Eq. (2), the y-component of the
momentum is conserved: py(7)=p,(7=0)=py,=const. From
Egs. (1)-(3) we find the well-known integral of motion [1]
U1 —p,(1) =), —P, =C=cong (4)
where y=(1+p%¥? is the relativistic factor. Equation (1)
gives us the expression for the transverse momentum:

4
P =P(&)+[E(OdE=po+A ()
)

where &(wylc)Ez-1, =& =0). With known p, and
Py=pPyo one can find the longitudinal momentum p, and y
from Eq. (4):

(%<5 ren
y Yo

(6)
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where f=A(A+2p,0)/2C. When an eectron isinitially non-
relativistic (J611), C=1 and f=A%/2+Ap,. For an initially
relativigic eectron with the longitudina momentum
prevailing, (Pxo)>,(Pyo)*<<(p)*>>1, we have from (6):

BEHE

A(A+ 2px0){

(7)
Vior Pro >0,
F1/4y% p,, <0/

where  yo=[1+(po) +(Py0) 2. When initidly the
transverse motion dominates ((Pyo)?(Pa0) °<<(Pro)>>>1,
IPxol=6) then:

(pz) :[pzo)+ A(A+2p,,)
y Yo 2y,

LINEARLY CHIRPED PULSE

Thus, the dynamics of an electron are determined by the
initial momentum and the value of A(&,¢). Let us
consider the interaction of an dectron with a chirped EM
pulse over an infinite interaction region &=+, &—oo,
For simplicity we choose a linearly chirped Gaussian
pulse, E.=avexp(—&1 d?)cos( 28, where
Q= w=1+AQ&820 is the normaized -carrier
frequency, 402=Q(0)-Q(-0). So, for the linear chirp we
obtain:

®

m'*a,0 o?
(1+V2)1/4 eXp - 4(1+V2) x
€)

o arctg(v)  o’v
2 4a+v?) |

where v=4Q02. According to expression (9), when
d#14(1+4)>>1, the momentum (energy) acquired by the
electron is negligibly small. For a non-chirped pulse
(1=0) the value of A is maximum for o=2"%
A=—(273"?exp(-1/2)a,. This case of a sub-cycle EM pulse
was studied in Ref. [6]. For a multiple-cycle pulse
considering here, momentum (energy) transferred to an
electron after interaction with such a pulse can be
considerable when 1 >>1. In this case:

—ao[zmjmexp[— ! ]cos[ g _77].(10)
AQ (0Q)? 200 4

We see that for a non-chirped pulse A- 0 (known result)
and that A#0 for a chirped pulse (new result) due to the
changein the carrier frequency. Onecan seealsothat Ais
a periodic function with an amplitude and “frequency”

A= TExdfz -

A=

1904

depending on the chirped pulse parameters. The value of
Aisequal to zero when dlAQ2=7£1/2+m), m=1,3,5,... Fig.
1 shows the dependence A(4Q) for different lengths of
the pulse. Thus, the energy of an eectron can be changed
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Figure 1. Electron’s transverse momentum gain A after
interaction with achirped EM pulse, a,=0.1, 0=50(a) and
0=100(b).

considerably, after interaction with a chirped EM pulse,
by proper choice of the pulse parameters. For example,
A=2 for AQ=0.5, a;=3, and 0=100. The latter two values
approximately correspond to the experimental conditions
of Ref. [2].

ELECTRONACCELERATION

The effect found can be used to accelerate charged
particles. For non-relativistic electrons the energy gain is
Ay =y-w=A(A+2p,0)/2 and the absolute energy spread in
an dectron bunch after interaction with the chirped pulse
will be OEd)+a=0)+Adps, Where J)5 (dy) is the
energy (transverse momentum) spread before interaction.
In the rdativistic case, according to (7), when p,>0,
energy gain is proportional to the initial energy and can
be considerable even for small value of A.

Assume initially po=p,c=0 and that the electron co-
propagates with the pulse (for which A=A;) with
relativistic velocity. After interaction with the pulse,
according to (5) and (7), pa=po(1+A®) and pu=A;. To
compensate the transverse momentum, py, acquired, a
second pulse can be sent along pu, So that py (p) will be
the longitudinal (transverse) momentum with regard to
the second pulse. Then, after interaction with second
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pulse, according to (7) and (8), pp=patA, and
Pe=PatA2(Ax+2p1)/2)4; here the signs of py and py in
the frame of second pulse should be taken into account.
So, by proper choice of the parameters of the pulses one
can make p,, equal to zero. This occurs, for example,
when A;=A>0, Ax<<2p,, and pu<0 and p;>0 in the
frame of the second pulse. This two-step acceleration
process can be repeated. The interaction time with the
first pulseis At /(1-y), where 7 isthe duration of the
pulse. So, for large enough ) the diffraction broadening
of the pulse, which takes place on a time scale 7y(IZr/C
(Zr=mo/AL is the Rayleigh length, rg is the focal spot
size), can regtrict the interaction time.

When a rdativistic electron moves across a chirped
pulse, the transverse momentum (energy) can be
increased, p=pwtA. A second pulse propagating in
parallel with the first one can accelerate the eectron
further, so that the longitudinal momentum acquired after
interaction with the first pulse will be compensated.

Equations (1)-(3) were solved numerically. Figure 2
shows the dynamics of eectron, which isinitially at rest,
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Figure 2 Dynamics of an eectron interacting with a
chirped pulse, po=0, a8,=3, 0=100 and 402=0.51 .

in the chirped pulse fidd. The eectron momentums are
p=A=2.19 and p~2.39 after interaction. In this case
J=1+p, (see equation (4)) and the interaction timeisin the
order of the pulse duration. When initially p,=3, the
transverse momentum dynamics are the same, but the
final longitudinal momentum is much higher, p~17.71
(see Fig. 3), in agood agreement with formula (9), y=p..
In this case the interaction takes place, in the laboratory

1905

frame, over a distance of about 45444, =172|pwym, Where
lewan=2(In2)"? is the full width at half maximum of the
pulse. For comparison, the Rayleigh length is=78544, for
a laser pulse with r;=30 gm and A =1 gm. For non-
chirped pulses the electron momentum was found to be
unchanged, so that p=p.
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Figure 3: The calculated longitudinal momentum of an
electron. All parameters are the same as those in Fig. 2
excepting initial longitudinal momentum, p,=3.

CONCLUSION

It has been shown that free charged particles can
undergo a net energy gain after interaction with a chirped
electromagnetic pulse. This new effect can be applied for
particle acceleration as well as for diagnostic purposes —
to measurethe chirp in apulse. The phenomenafound can
play an important role in chirped laser pulseplasma
interactions which are currently under intensive
theoretical and experimental investigations. (see, e. g.,

[4.71).
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