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SURFACE ROUGHNESS EFFECT ON A MOVING BUNCH 

S. Banna and L. Schächter, Electrical Engineering Department, Technion, Haifa 32000, ISRAEL  

Abstract 
The effect of surface roughness on a moving electron 

bunch is considered by resorting to a model of a metallic 
structure with random perturbations on its surface. Based 
upon this model analytic expressions have been 
developed for both the average energy emitted per groove 
as well as for its standard-deviation. For a relativistic 
bunch both quantities are shown to be virtually 
independent of the momentum. Moreover, it has been 
found that the standard-deviation of the energy emitted 
per groove is proportional to the standard-deviation of the 
roughness parameter to the power of 1/4.   

1  INTRODUCTION 
The acceleration structure of a linear collider designed 

to operate at X-band is manufactured within an accuracy 
of about 1 mµ . These four orders of magnitude difference 
between the operating wavelength and the typical surface 
roughness will be difficult to maintain in case of a 
vacuum optical accelerator operating at 1 mµ  since such a 
difference implies engineering at the atomic level 1A! . In 
fact, both the size of the bunch as well as the roughness of 
the structure are anticipated to be of the same order of 
magnitude, leading to a significantly different regime of 
operation when compared to that of a machine driven by a 
microwave source. It is the purpose of this paper to put 
forward the main results of a study aimed to the 
investigation of the impact of the surface roughness upon 
the wake-field of a moving bunch of a size comparable to 
the dimensions of the surface roughness. 

Several studies have been conducted in the past in order 
to investigate the surface roughness effects upon wake-
fields by considering either single obstacles or periodic 
structures. For example, Kurennoy et al. [1] have 
developed a general theory of beam interaction with small 
discontinuities of the vacuum chamber of an accelerator. 
The analysis was extended [2] to obstacles protruding 
inside the drift pipe of an accelerator for wavelengths 
larger compared to the obstacle's typical size. Further, an 
evaluation of the coupling-impedance has been presented 
by Stupakov [3] employing the so-called small-angle 
approximation.   

2  FORMULATION OF THE PROBLEM 
In the framework of our investigation a quasi-analytic 

analysis facilitating a relatively simple evaluation of the 
wake-field due to surface roughness of arbitrary size has 
been developed. It relies on an approach published about 
a decade ago in the context of quasi-periodic traveling 
output structures for high-efficiency, high-power 
microwave sources [4,5]. The model relies on a 
cylindrical waveguide of constant internal radius to which 

a series of grooves are attached; their geometric 
parameters i.e. width, height and location, are assumed to 
be randomly distributed, and in principle, these grooves 
can be large on the scale of the typical wavelength of the 
radiation driving the system. Details of this study will be 
published separately [6]. 

In order to analyze the wake-field generated by the 
surface roughness, consider a metallic structure consisting 
of a random number ( )N  of grooves attached to a 
cylindrical waveguide of constant internal radius int( )R , 
as illustrated in Fig. 1. The center of the nth groove is 
denoted by nz , its width by nd  and its external radius by 

ext,nR . An electron bunch of radius bR , length zL  and a 
total charge Q , is moving along the symmetry axis of the 
structure at a constant velocity 0v , generating a current 
density denoted by ( , ; )zJ r z t . 

 
 

 

 

 

 

Figure 1: A finite-size bunch moving in vacuum along 
the axis of a structure with random size grooves.  

As the only component of the current density is parallel 
to the z-axis, it is sufficient to consider only the 
longitudinal magnetic vector-potential Az satisfying the 
non-homogeneous wave equation. Its solution has two 
components: the so-called primary field determined by 
the current density in the absence of the metallic structure 
and the so-called secondary field accounting for the 
impact of the structure. Taken together, these fields 
satisfy the boundary conditions, establishing the unknown 
amplitudes. Once these amplitudes have been established 
all the field components may be determined; in particular 
the longitudinal component of the secondary electric field 

( ) ( , ; )s
zE r z t . As the bunch traverses the structure, the 

emitted power may be expressed in terms of this field 
component as 

 
(1) 

 
Moreover, the emitted energy is given by 

 
(2) 

( )S Ω  representing the normalized spectrum and W  the 
normalized energy. As already indicated, the geometrical 
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parameters of each groove are random and of the same 
order of magnitude. Explicitly, they are given by  
 

                                                                                     (3) 
 
where ng  is a random variable that is uniformly 

distributed between 0 and δ ; δ  will be referred to as the 
normalized roughness parameter. The center of the first 
groove ( 1 1 intz z R≡ ) is being chosen as a point of 
reference ( 1 0z = ) and accordingly, the center�s location 
of the nth (n=2,3,...,N) groove is given by 

1 10.5 0.5n n n n nz z d d g+ += + + + . 

3  DISCUSSION 
Although, the analysis is valid for a large variety of 

values of δ , the discussion that follows is limited to 
relatively small values of δ  since if intR  is of the order of 
0.5 mµ  the typical roughness is not expected to be larger 

than 0.1 mµ  therefore, we consider 0 0.2δ≤ ≤ . 
Moreover, the accelerated bunch is expected to be of the 
order of  30 45÷! ! (namely about 0.1 mµ ), and as a result, 

int0.15 0.30z zL L R≤ ≡ ≤ ; the normalized radius of the 
bunch is chosen to be int 0.5b bR R R≡ = . In order to 
determine the characteristics of the emitted energy 
(average and standard-deviation), a series of simulations 
has been performed where each data point is a result of 
averaging over 80 different distributions for a given δ . 
    In both frames of Fig. 2 the spectrum of the emitted 
energy is illustrated. The left frame shows the maximum 
and minimum values of the normalized spectrum, its 
average value, its average value plus the standard-
deviation and its average value minus the standard-
deviation; in all five cases 0.5bR = , 0.25zL = , 0.1δ =  

410γ = . Evidently, all the curves overlap for high 
frequencies and the deviation from the average values for 

low frequencies is less than 25%. Furthermore, as 
illustrated in the right frame of Fig. 2, the first zero of the 
spectrum remains virtually unchanged when varying δ . 
In fact, this zero is related to the cut-off frequency of the 
cylindrical waveguide i.e int 1 2.4048R c pωΩ ≡ = = , 
where c is the speed of light in vacuum, p1 being the first 
zero of Bessel function of zero order and first kind. Other 
simulations indicate that the normalized spectrum is 
weakly dependent on γ  and in fact, for the ultra-
relativistic case the spectrum is virtually independent of 
γ . 

After examining the properties of the spectrum, our 
focus moves towards the total energy emitted, 
establishing its dependence on the roughness parameter 
(δ ) with zL  as a parameter. The left frame of Fig. 3 
illustrates the average value of the normalized energy per 
groove versus δ ; ( )0.15,0.20,0.25,0.30, 0.50z bL R= =  

and 410γ = . Two facts are evident: firstly, the average as 

well as the normalized energy per groove (W W N≡" ) 

increases with the increase of δ . Secondly, W"  increases 
when reducing the length of the bunch ( zL ). Simulations 
reveal that the impact of γ  for relativistic energies is 
virtually negligible. According to these simulations the 
average emitted energy may roughly be approximated by 
 
 

 (4) 
 
 

 
 

A second important feature of the emitted energy is its 
normalized standard-deviation given by the expression 

( )20.25 2 0.25W W W Wδ δ−∆ ≡ − . The latter is 

shown in the right frame of Fig. 3 versus δ , with zL  as a 
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Figure 2: Normalized spectrum versus the normalized frequency. Left: Maximum, minimum, average value for the 
normalized spectrum and average value plus/minus one standard deviation. Right: Average value of the normalized 
spectrum for different values of  δ .  
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parameter. A best fit of the simulation results reveals that 
the standard-deviation may be approximated by 
 
 

                                                                                     (5) 
 
 
 
 
 

 
 
 

Simulations indicate that the last approximation is 
adequate for variety of values for bR , zL  and γ . The 
expression in Eq. (5) constitutes a generalization of the 
conditions imposed in Eq. (3) since based on the latter the 
roughness parameter δ  determines both g  as well as 

g∆ . In order to identify the role of each one of the last 
two parameters, the simulation was repeated for 
fluctuations in the parameters of a periodic structure e.g. 

(0)
ext , ext ,n n nR R g= + , (0)

n n nd d g= +  and  

1 10.5 0.5n n n n nz z d d g+ += + + + .   

 4  CONCLUSIONS 
The characteristics of the electromagnetic energy 

emitted by a bunch traversing a number of grooves of 
random geometry were established. Of special interest are 
the average and the standard-deviation of the emitted 
energy per groove in terms of the average roughness 

g and its standard-deviation g∆ . The main result of the 
present study may be expressed in terms of these two 
quantities as given in Eqs. (4) and (5). These relations are 
valid for relativistic energies ( 50γ > ) and independent of 
the radius of the bunch provided int 2bR R≤ . For a point-
charge ( 0zL = ) and for practical structures where 

int0.1Rδ ≈  the expression for the average energy per 
groove reads  

 
  (6) 

 
 
It should be pointed out that the expression for the 

average energy per groove is identical to that developed 
for the case of a point-charge moving in a cylinder of 
radius intR  bored in a dielectric or metallic medium [7], 
and is almost equal to that obtained for the case of a 
point-charge moving in a cylindrical wave-guide with a 
periodic wall of arbitrary, yet azimuthally symmetric 
geometry [8]. 
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Figure 3: Left: Average value of the normalized energy per groove versus δ . Right: Normalized standard-
deviation of the energy out of 80 different distributions versus δ .   
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