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Abstract

Photonic crystals have great potential for use as laser-
driven accelerator structures. A photonic crystal is a dielec-
tric structure arranged in a periodic geometry. Like a crys-
talline solid with its electronic band structure, the modes of
a photonic crystal lie in a set of allowed photonic bands.
Similarly, it is possible for a photonic crystal to exhibit
one or more photonic band gaps, with frequencies in the
gap unable to propagate in the crystal. Thus photonic crys-
tals can confine an optical mode in an all-dielectric struc-
ture, eliminating the need for metals and their characteristic
losses at optical frequencies.

We discuss several geometries of photonic crystal ac-
celerator structures. Photonic crystal fibers (PCFs) are
optical fibers which can confine a speed-of-light optical
mode in vacuum. Planar structures, both two- and three-
dimensional, can also confine such a mode, and have the
additional advantage that they can be manufactured using
common microfabrication techniques such as those used
for integrated circuits. This allows for a variety of pos-
sible materials, so that dielectrics with desirable optical
and radiation-hardness properties can be chosen. We dis-
cuss examples of simulated photonic crystal structures to
demonstrate the scaling laws and trade-offs involved, and
touch on potential fabrication processes.

INTRODUCTION

The extraordinary electric fields available from laser sys-
tems make laser-driven charged particle acceleration an
exciting possibility. Practical vacuum laser acceleration
requires a guided-mode structure capable of confining a
speed-of-light (SOL) mode and composed entirely of di-
electric materials, and photonic crystals provide a means
to achieve this capability. A photonic crystal is a structure
with permittivity periodic in one or more of its dimensions.
As described in [1], optical modes in a photonic crystal
form bands, just as electronic states do in a crystalline solid.
Similarly, a photonic crystal can also exhibit one or more
photonic band gaps (PBG’s), with frequencies in the gap
unable to propagate in the crystal. Confined modes can be
obtained by introducing a defect into a Photonic Crystal
lattice. Since frequencies in the bandgap are forbidden to
propagate in the crystal, they are confined to the defect. A
linear defect thus functions as a waveguide.

A significant benefit of photonic crystal accelerators is
that only frequencies within a bandgap are confined. In
general, higher order modes, which can be excited by the
electron beam, escape through the lattice. This benefit has
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motivated work on matallic PBG structures at RF frequen-
cies [2]. In addition, an accelerating mode has been found
in a PBG fiber structure [3]. After discussing 2D planar
structures we consider the fiber geometry in more general-
ity.

2D PLANAR PHOTONIC CRYSTAL
ACCELERATOR STRUCTURES

Structure Geometry

The geometries we consider in this section are two-
dimensional: we take them to be infinite in the vertical
(y) direction, while the electron beam and the accelerat-
ing optical field copropagate in the z-direction, transverse
to the direction of symmetry. While such structures are not
immediately suitable for charged particle acceleration, 2D
structures can be analyzed with much less CPU time than
can 3D structures, thereby allowing rapid exploration of
multiple sets of geometric parameters. The computational
technique is discussed further below.

Our underlying photonic crystal lattice is a triangular ar-
ray of vacuum holes in a silicon substrate. Assuming an
operating wavelength of 1.5 µm in the telecom band, sil-
icon has a normalized permittivity of εr = ε/ε0 = 12.1
[4]. Such a lattice exhibits a wide TE bandgap, as desired
since the accelerating field component is transverse to the
direction of symmetry. For lattice constant a the nearest-
neighbor center-to-center hole spacing, we choose the hole
radius r = 0.427a to maximize the relative width of the
bandgap.

The accelerator structure consists of a vacuum guide in
this lattice, as shown in Fig. 1. The guide width w is de-
fined such that the distance between the centers of the holes
adjacent to the waveguide are w + a. Also, dielectric ma-
terial can be added to the sides of the guide, and we let δ
denote the total width of the dielectric “pad” added to both
sides of the guide. Fig. 1 also shows an accelerating mode
of this geometry, i.e. Ez is nonzero on axis and ω = ckz .
In fact, for a general selection of w and δ, there will be a
kz for which this waveguide mode is synchronous. This is
because the dispersion properties of this PBG waveguide
are similar to a metallic guide in that ω/kz > c through-
out most of the bandgap, but at the upper edge of the gap
the dispersion curve reduces in slope and meets the SOL
line. The padding can be added in order to bring the SOL
frequency into the center of the gap where the dispersion
curve is more linear.
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Figure 1: An accelerator structure geometry with a waveg-
uide mode. The shading indicates the electric field com-
ponent in the direction of e-beam propagation. Here the
guide width is w = 3.0a, the pad width is δ = 0.25a, and
the wavelength is λ = 2.78a.

Accelerating Mode Parameters

Several parameters characterize the performance of an
accelerating mode. The relationship between the input
laser power and the accelerating gradient is described by
the characteristic impedance [5]. Since our 2D structures
only confine modes in one transverse dimension, we nor-
malize the impedance to that of a structure one wavelength
high, so Zc = E2

accλ/Ph, where Eacc is the accelerating
gradient and Ph is the laser power per unit height. We
find an empirical power-law scaling of the impedance, with
Zc ∝ (w/λ)−3.55.

Next, there is the damage factor fD = Eacc/ |E|mat
max,

where |E|mat
max is the maximum electric field magnitude any-

where in the dielectric material. Since laser power is ulti-
mately limited by the damage threshold of the material, the
damage factor is an important measure of the maximum
possible accelerating gradient a structure can sustain.

The damage threshold exhibits a dependence on laser
pulse width which becomes favorable at very short pulse
widths, as examined in [6] and paramaterized in [5]. Thus
these accelerator structures are transmission-mode, and a
high group velocity vg is desired so that short pulses may be
used. The qualitative behavior of these parameters presents
a trade-off. As the guide is widened, the damage factor de-
creases. On the other hand, the group velocity increases,
allowing shorter laser pulses to be used, for which the ma-
terial damage threshold is at a higher field. To find the op-
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Figure 2: The maximum accelerating gradient sustainable
by each structure geometry, normalized to the material
damage threshold Ep for 1 ps pulses.

timum parameters we plot the maximum possible acceler-
ating gradient taking both effects into account in Fig. 2.

PHOTONIC CRYSTAL FIBER
STRUCTURES

The geometry of this structure is again a triangular array
of vacuum holes, this time in silica (εr = 2.13). Here the
structure is considered to be a fiber drawn infinitely in the
beam propagation direction, with the electrons and laser
pulse copropagating along the fiber. For these structures
r = 0.35a, and the defect consists of a larger central hole.
Modes were found for three different mode radii, and are
shown in Fig. 3. The frequencies of the three modes are
given by ωa/c of 8.20, 8.12, and 8.20 and group velocities
0.60c, 0.654c, and 0.59c (left to right).

The structure was simulated using periodic boundary
conditions, and the fields in the lattice region are due to
crosstalk between neighboring defects. By increasing the
size of the supercell, this crosstalk can be minimized, how-
ever the computational time significantly increases. Also,
the 6-fold azimuthal symmetry of the structure implies that
SOL modes in vacuum contain only m = 6n azimuthal
modes for n an integer, reducing the emittance blowup
from higher-order modes. Finally, we find that the char-
acteristic impedance decreases with guide radius, as is the
case with metallic waveguide structures.

COMPUTATION TECHNIQUES

We use the MIT Photonic Bands (MPB) package, a
public-domain code using an iterative eigensolver tech-
nique [7]. For a given geometry and Bloch wavevec-
tor, MPB computes frequencies and field configurations of
supported modes. MPB can compute group velocities of
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Figure 3: Accelerating modes of several photonic crystal fiber configurations. The shading indicates the axial electric
field, which is also the direction of propagation of the mode.

modes as well by applying the Feynman-Hellmann theo-
rem [8, 9].

Using the frequencies and group velocities, we can in-
ductively converge on the longitudinal wavenumber for
which a speed-of-light mode exists. Having found a mode
for a particular wavenumber, we can use its frequency and
group velocity to obtain a linear approximation for its dis-
persion curve near that wavenumber. The intersection of
that approximation with the SOL line gives the wavenum-
ber for the next computation, which yields a mode whose
phase velocity is closer to c. Since the iterative eigensolver
for each step can be seeded with the field configuration
from the result of the previous step, successive steps are
quite fast, and convergence to an SOL mode is a computa-
tionally light task once the initial mode has been found.

FABRICATION POSSIBILITIES

The 2D structures discussed above are amenable to pho-
tolithography, with 50 : 1 apect ratios available from cur-
rent reactive ion etching equipment. Some investigation
into fabrication of these structures has taken place in the
past [10]. Fabrication of 3D photonic crystals with omnidi-
rectional bandgaps, such as the “woodpile” structure [11],
is an active area of research. A number of techniques are
being developed, including multilayer lithography, wafer
fusion, stacking by micromanipulation, self-assembly, and
others [12]. PCF manufacturing is a large and growing area
of research in industry, since photonic crystals allow for tai-
loring optical properties to specific applications, from non-
linearity for wavelength conversion in telecommunications
to large mode area for materials processing [13].

CONCLUSION

Photonic crystals have great promise as potential laser
accelerator structures. Not only do they support accelerat-
ing modes, but such modes exist for a wide range of geo-
metric parameters. While the basic accelerator parameters
have been examined, much remains to be done to under-
stand the properties of these structures. Wakefield com-

putations as well as coupling structure design have yet to
be explored. In addition, there are many photonic crystal
lattices for which accelerating modes have not been com-
puted, including 3D geometries. However, manufacturing
technology, numerical simulation capability, and theoreti-
cal understanding continue to progress at an extraordinary
rate, driven by industry forces. We therefore expect a bright
future for photonic crystals as an accelerator technology.
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